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Abstract. This paper presents an agent-based approach to Network Intrusion
Prevention on corporate networks, emphasizing the protection from fast-spreading
mobile malicious code outbreaks (e.g. worms) and related threats. Agents are not
only used as a system-integration platform, but we use modern agent approaches
to trust modeling and distributed task allocation to efficiently detect and also
counter the attack by automatically created and deployed filters. The ability of
the system to react autonomously, without direct human supervision, is crucial in
countering the fast-spreading worms, that employ efficient scanning strategies to
immediately spread farther once they infect a single host in the network.1

1 Introduction

This paper presents an application of classic agent technology techniques: trust mod-
eling, meta-agents, computational reflection and distributed task allocation to protect
a local or campus network against the spread of malicious code, e.g. worms [1]. The
worms are a specific type of malicious code, that spreads across the computer networks,
and uses known vulnerabilities of widely deployed software to infect the hosts, possi-
bly perform malicious actions and spread further. The spread of the worm is influenced
by its scanning strategy. Scanning strategy uses the current IP address as an input, and
determines the addresses to propagate to, including the order in which the propagation
is attempted. Strategies are typically defined in terms of various types of subnets [2]
– for example, a Slammer worm uses a random scanning over the whole IPv4 address
space, while the Code Red II scans local subnet with higher probability.

1 This material is based upon work supported by the European Research Office of the US Army
under Contract No. N62558-07-C-0001 and N62558-07-C-0007. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the European Research Office of the US Army. Also sup-
ported by Czech Ministry of Education grants 1M0567 and 6840770038.
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Historically, there were many attempts to use agents in intrusion detection systems
(IDS) [3]. However, these attempts have never matured into widely-deployed commer-
cial solutions, and we argue that the computational power and techniques were not
advanced enough to succeed. In our work, we aim to present a system design that ef-
ficiently protects the small and medium-sized networks against the worm attacks with
minimum administrative overhead. Therefore, the performance and autonomy of the
solution are crucial from the operational point of view.

Our detection approach, presented in Section 3 exploits the weak spot of worm prop-
agation, the randomness of scanning strategy that determines the IP addresses targeted
by the worm for future infection attempts. The randomness makes the spread less ef-
ficient, due to the exploration of non-existing hosts, and generates significant network
traffic that can be detected and matched with the alarms raised by protected hosts (see
Section 2). The matching is performed by IDS Agents, that use their extended trust
models [4] to assess the trustfulness/maliciousness of individual network flows. The
conclusions of the models are used by IDS agents to generate filtering policies, and to
convert these policies into the bytecode (JAVA) by means of computational reflection.
Filters are then deployed on network devices to limit the future spread of the worm by
means of collective reflection process, based on established distributed task allocation
methods [5].

2 System Architecture and Observation

The system, as presented in Fig 1, is designed to fulfill three principal functionalities:
to observe the network traffic and host behavior, to detect malicious traffic and to react
by deploying efficient filters on network devices to prevent the spread of the threat. This
functionality is implemented by following elements:

• Observation is realized by two types of sensors: - Host sensors are deployed on
selected protected hosts in the network and raise alarms when an exceptional behavior
suggests a possibility of attack or intrusion attempt. Network sensors are located on
network devices and capture the information about the network flows, together with the
traffic statistics. The aggregated observations are then processed by IDS agents.

• Detection of malicious traffic is the primary responsibility of IDS agents, who
process the information from the sensors using their trust model [4] in order to cor-
rectly correlate the alarms received from hosts with the current network flows. Their

Fig. 1. System Components Overview
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role is to correctly identify the malicious traffic and to generate a description of the
malicious flow(s) for filter creation in reaction phase.

• Reaction phase is triggered upon attack detection by IDS agents. The agents generate
one or more filters matching the attack and pass these filters to the network devices.
These reflective [6] devices are able to autonomously adapt to changing environment.
In our case, the adaptation is ensured by insertion of generated filters into their code
and associated delegated operations.

When deployed, the system components use classic agent methods (e.g. directories
or matchmakers) to discover each other and to maintain the system operational in the
dynamic environment. The essential communication protocol in the observation and
detection phase is SUBSCRIBE 2, which allows efficient information gathering by the
IDS Agents.

The observation of attacks by the Host sensors is based on an assumption of random-
ized worm spread. As all currently known worms exploit a vulnerability specific for a
single system type, we base our defence on an assumption that the deployed hosts are
composed of wide variety of system configurations, and that most of these systems ar
able to detect an unsuccessful (or even successful) attack, aimed at the vulnerability of
other system. The detection of possible attack triggers an alarm that is sent to the IDS
agents. We currently assume only simple, binary alarms without any additional infor-
mation regarding the attack description. This maximizes the range of software/devices
able to provide the alarm, and also makes the misuse of the mechanism more difficult,
as the potential attacker can not directly specify the ”suspicious” traffic.

At the same time, network sensors capture the information specified in Table 1 about
each individual network flow (unidirectional connection component identified by srcIP,
dstIP, srcPrt, dstPrt and Protocol) and also provide this information to the same IDS
agents that perform the detection process.

Table 1. Characteristics of the flow: Identity and Context (based on [7])

Feature Description Feature Description
Connection Identity Connection Context
srcIP Source IP Address. count-src Number of flows from the

unique sources toward the
same destination.

destIP Destination IP count-dest Number of flows to unique
destinations from the same
source.

srcPort Source Port count-serv-dest Number of flows to the
same destination IP using
the same source port.

destPort Destination Port count-serv-src Number of flows from the
same IP to the same port.

Payload Signa-
ture

First 256 bytes of the flow
content (application headers)

2 www.fipa.org
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3 Attack Detection

IDS agents use an extended trust model [4,8] to correlate the alarm received from the
hosts with the observed traffic and to identify the malicious flows. The trust model inside
each IDS agent processes the inputs that are provided by both host and network sen-
sors in near-real time: sensors: (i) network flows information that contains the TCP/IP
headers and first 256 bytes of the flow content [9], (ii) statistics of the existing network
flows, listed in the context part of Table 1, and (iii) the alarms raised by Host sensors.

The trust model correlates the occurrence of alarms received from the hosts with the
features of the relevant captured flows and the statistics associated with a particular flow.
The features and the statistics form an Identity-Context feature space [4]. As the number
of flows in an average network can be significant, it is important to process, represent,
and maintain the data efficiently, and to keep the model synchronized with the most
recent alerts and traffic. Therefore, instead of associating the information with individ-
ual flows in the Identity-Context space, the flows are aggregated into clusters. For each
cluster, the IDS maintain its trustfulness, expressed as a fuzzy number [10]. The learn-
ing of trustfulness in our model is iterative, and each iteration consists of two stages. In
the first stage, IDS agents generate and update the clusters using the Leader-Follower3

algorithm [11], while in the second stage IDS agents update the trustworthiness that is
associated with the centroids of the clusters that are adjacent to the observation rep-
resentation in the Identity-Context space. For sake of efficiency, our implementation
actually performs both stages in the same time, as we can see in Alg. 1.

Algorithm 1. Processing of the new observation.

Input: flow,situat,trustObs
closest ← nil;
mindist ← ∞;
id ← identityCx(flow,situat)
foreach rc ∈ rclist do

dist ← distance(rc,id)
if dist < mindist then

closest ← rc
wei = weight(dist)
if wei > threshold then

rc.updateTrust(trustObs,wei)
end
if mindist > clustsize then

rclist.append(id)
id.updateTrust(trustObs,wei)

else
closest.updatePosition(id)

When IDS agent observes a flow, it extracts the identity features (see Tab. 1), then re-
trieves the associated statistics to determine the position of this vector in the

3 Our current implementation uses LF clustering as it is efficient in terms of computational and
memory cost, and allows on-line processing. Any other clustering algorithm can also be used
instead, the reference points can even be placed arbitrarily [8].
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Identity-Context space (id in Alg. 1) . Then, it computes the distance of the observed
flow vector to each of the existing centroids (rc ∈ rclist), and updates the trustfulness
of these centroids with a weight wei that decreases with growing distance. If the clos-
est centroid is farther away than a predetermined threshold clustsize, a new cluster is
defined around the new observation. When the model is queried regarding the trustful-
ness of a specific flow vector, it aggregates the trustfulness associated with the centroids,
with a weight that decreases with the distance from the centroid to the flow represen-
tation in the Identity-Context space. Once it has determined the trustfulness, in a form
of a quasi-triangular fuzzy number, it calculates inferences with a high trust and low
trust fuzzy intervals. These intervals represent the knowledge about the normal level of
trustfulness in the environment, and allow the IDS agent to infer whether the flow is
trusted or not under current conditions [10].

The output of the detection phase is a selection of malicious traffic, specified as a
cluster (or a group of clusters) in the identity-context space. This description, together
with the examples of typical cluster members is then used to generate a traffic filter that
only use the identity part of the features from Table 1, which can be matched with actual
flows.

4 Reaction to Attack

As the detection uses the actual infections to detect the malicious traffic, we must as-
sume that at least some of the vulnerable hosts in the network were already infected by
the detected threat. Therefore, the filter generated by the detection upon attack discov-
ery must not only protect the network interfaces (firewalls, VPN access,...), but shall be
deployed at least once on each path between any two hosts on the network. If the filter
can not be deployed in some network parts, these parts shall be considered as a single
host by the protection mechanism and treated as such.

As there may be multiple filters deployed on the network in the same time, and a big
part of network devices may be unable to perform the complete filtering of the pass-
ing traffic on their own, we use the distributed task allocation methods to find optimal
delegation of filtering tasks between the network devices.

The delegation of filtering is based on negotiation among two or more nodes. As a
result of the negotiation one node would be dedicated to provide filtering services to the
other nodes. Such extension can increase the number of deployed filters, but increases
also the communication traffic (as the flows must be tunneled to filtering devices).
In case of delegation, outlined in Extended Filter Deployment Algorithm (EFDA, see
Alg. 2), the agent uses Extended Contract Net Protocol (ECNP) [5] to ask trusted agents
(determined by policy or a trust model) to perform filtering on its behalf, instead of local
filter deployment.

One of the main features of Extended Contract Net Protocol compared to simple
Contract Net Protocol [12] is that the participants can propose to fulfill only part of
the task. The initiator agent starts negotiation by sending task specification to all trusted
agents and is waiting for proposals with specified costs. In case participant agent decides
to propose for given task it reserves all resources necessary for fulfilling task or part of
it and sends proposal to the initiator. At this point participant agent can’t cancel its
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Algorithm 2. EFDA Algorithm

Θ = all trusted agents.
Φ = set of my filters.
Ψ = ∅.
repeat

Send Call-For-Proposals to all agents Θ.
Wait for all proposals Π .
Choose the winner A:

the agent that proposes minimal average price for deploying filters F .
Ψ = Ψ ∪ {A}
Φ = Φ \ F
Send Temporary Accept to agent A.
Send Reject to agents Θ \ {A}.

until Φ = ∅ or Π = ∅ ;
Send Accept to all agents Ψ .

offer by itself and is waiting for the initiator answer. After initiator receives proposals
covering parts of the task, the agent with best proposal is given temporary accept. After
temporary accept is received, the agent is committed to the task and is waiting for final
accept to start performing the task. Initiator sends rejects to all agents but the accepted
one and thus they can cancel reservation of their resources.

New negotiation turn is taken for the remaining part of the task and again all trusted
agents receive the task specification. After whole task being distributed among partici-
pant agents or getting to the point where no more agents can propose to fulfill any part
of the task, the initiator agent accepts a consistent subset of proposals that were previ-
ously temporarily accepted. At this point both initiator and participant agents are fully
committed.

In our domain the task is represented by all of the filters agent is willing to dele-
gate. Participant agents after receiving the task specification are willing to cooperate
and create proposal for as many filters as possible. The cost for each filter combines
the distance of the agents (initiator and participant - this distance corresponds to the
growth of the traffic in the network) and computational costs/price for deploying the
filter. When task contains filter that has already been deployed on participant node the
price for deploying is zero and thus the proposed filter cost is based only on distance.
According to the strategy we want to follow the importance of distance or computa-
tional cost in the final price for the task can be changed. The higher the importance of
distance is the less filters can be accommodated in the network, but on the other hand
the growth of additional network traffic is less significant.

Our task is to deploy as many filters in the network as possible, but at the same time
we are trying to keep the additional network traffic as low as possible. Therefore the
delegation of filters starts at the point when no more filters can be deployed on local
network device.

Using Filter Delegation. Figure 2 shows simple situation of filter delegation. Switch
A didn’t have enough free computational capacity to deploy all filters available, so
the EFDA assigned one of additional filters to Switch B located slightly off the way.
Therefore every-time traffic is sent from Host 1 to Host 2 it is forwarded by Switch A
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Fig. 2. Using filter delegation RC Query is created for traffic from Host 1 to Host 2.
RC Query contains original flow, which is either returned if determined as not malicious or
dropped in other case.

to Switch B that contains remaining filters. Special filter called filter-for deployed on
Switch A encloses the traffic in new flow and marked as RC Query to be easily recog-
nizable by switch it is addressed to. After receiving RC Query device performs filtering
and in the case that flow is considered to be safe it is sent back enclosed in RC Reply
flow otherwise it is dropped. Network devices don’t implement cache to store flow
content while waiting for RC Reply and thus the whole flow needs to be forwarded
although it means increase in network traffic. Forwarding all the traffic would cause
excessive increase in network traffic and therefore each filter-for contains port number
of traffic it relates to and forwarding is performed only for traffic containing this port
number.

5 Experimental Results

As a testbed for our experiments we used an agent-based network simulation called
Anet (Agent network). Several tests have been performed to evaluate the above-
presented strategies and to identify their limitations. Scenario used for our experiments
reported below contains 170 hosts of two different types. This means that each worm
can infect approximately half of the population and the other half rises alarm upon re-
ceiving vulnerable flow. The propagation strategy that the worms are using to spread
through the network is essential for our method - we have implemented a common
strategy (similar to the one employed by Code Red II or Blaster worms) where worm
is choosing IP address pseudo-randomly. There is 50% chance that the IP address will
be from the same C-subnet as it’s source address, and a 50% chance it will be from the
same B-subnet. This strategy actually favors propagation on our simulated network, and
is therefore a worst-case scenario – many worms scan local subnet with higher priority
and than the whole IPv4 space.

In experimental scenario, we launch a sequence of worms into the system. Each
worm starts spreading as soon as the last one has finished the spread, plus the time
to terminate the reaction of the protective system. We observe the percentage of host
that gets infected by worm as well as the percentage of malicious worm flows that
are deleted by our filters before reaching their destination. These two parameters are
related: more flows we filter, less hosts shall get infected, as we can clearly see in
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Table 2. Percentage of infected hosts/filtered flows in experimental runs on identical network.
Differences are due to the scanning strategy influence.

Experiment First worm Second worm
Experiment % Filtered

Flows
% Infected
Hosts

% Filtered
Flows

% Infected
Hosts

1 86% 09% 19% 93%
2 93% 07% 00% 98%
3 50% 22% 00% 00%
4 65% 51% 33% 54%
5 88% 01% 44% 86%
6 93% 01% 00% 85%
7 90% 03% 93% 28%
8 46% 39% 11% 68%
9 60% 07% 00% 51%
10 90% 13% 03% 30%
Avg 76% 15% 23% 59%

the results. On the other hand, the inherent randomness of the worm spread causes
important variations in results presented in Table 2.

In the results, we can see that the system in its current stage of development is able
to handle a single virus outbreak, and to spread its spread rather efficiently. The results
clearly show that the system reacts only once the attack is reported by non-vulnerable
hosts – it is not designed to prevent the outbreak, but to contain it and to limit its impact.

The results for second and all subsequent worms are rather similar – while the system
is able to reduce the impact of the attack, its influence is limited and about 60% of
vulnerable hosts are infected on average (compared to 15%) in case of the first worm.
We attribute this degradation of performance to two factors - the detection module data
is influenced by the activity of the first worm, and the capacity of network devices for
filter deployment is already partially used.

6 Related Work

There are two fundamental approaches to network intrusion detection: anomaly detec-
tion and signature detection. Most commercial and existing open-source products fall
into the signature-detection category: these systems match the packets in the network
with the predefined set of rules [13]. While this system can be valuable in detecting
known attack patterns, it provides no protection against novel threats that are not repre-
sented in its knowledge base. Furthermore, as the rules are typically sparse to achieve
efficiency, the signature-based IDS have a non-negligible false positives ratio. Another
major disadvantage of the existing systems is a high computational cost of reasonably
complete set of rules – currently, complete SNORT database is not typically entirely
deployed due to the computational power limitations.

The anomaly detection approaches in NIDS are typically based on classification/
aggregation of sessions or flows (unidirectional components of sessions) into classes
and deciding whether a particular class contains malicious or legitimate flows. While
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these approaches are able to detect novel attacks, they suffer from comparably high
false-positive (or false negative depending on the model tuning) rate. Most research in
the NIDS area currently delivers a combination of signature and anomaly detection and
aims to improve the effectiveness and efficiency of intrusion detection. In the following
paragraphs we are going to present a brief overview of selected (N)IDS systems [3].
Two of the recent representative systems are MINDS and SABER.

MINDS system [7] is an IDS system incorporating signature and anomaly detection
suitable for host and network protection. As an input for traffic analysis it uses flow
information which is aggregated in 10 minutes intervals. It extracts time-window and
connection-window based features, from the traffic, to detect both fast and stealth at-
tacks. The signature detection is used for protection against known threats. The anomaly
detection the the principle of local outlier factor by which an unusual traffic is discov-
ered. The human operator then decides which anomalous traffic is actually malicious
and can use the captured information do define the signatures for subsequent traffic
filtering.

SABER [14] combines both detection (anomaly and signature) and protection mech-
anisms. It incorporates a DoS-resistant network topology that shields valuable resources
from the malicious traffic, and supports a business process migration to the safe location
upon the attack. Real-time host-based IDS monitors program’s use of Windows Reg-
istry and detects the actions of malicious software. The analogous approach has been
used for file-based anomaly detection in Unix environment, when the IDS monitors
a set of information about each file access. SABER is completed by autonomic soft-
ware patching mechanism [15] which tries to automatically patch vulnerable software
by identifying and correcting buffer overflows in the code, using the information from
specialized honeypots operated alongside production machines.

7 Conclusions and Future Work

In our work, we present a multi-agent approach to intrusion detection and response,
which relies on a combination of established IDS techniques (traffic observation, pre-
processing and filtering) with efficient multi-agent approaches – trust modeling and
distributed task allocation.

Our approach was evaluated in a high-level simulation of a campus-like network,
featuring approx. 180 hosts and 30 network devices. Hosts were split in two groups,
roughly of the same size, each with a different set of vulnerabilities. We have assumed
that the network is protected by Firewall/NAT from direct attacks, and that the infec-
tions propagate from a single host (infected host connected by VPN, connected infected
laptop, etc.). In this setting, the system is able to significantly reduce the spread of sim-
ulated worm, reducing the infection rate to approx. 20% of hosts infected before the
attacks are reported, detected and the filter is crated and deployed on network devices.

In our current work, we concentrate on handling of multiple intrusions, prioritization
of filtering and other issues where a rigorous application of multi-agent principles can
tackle the real network-security problems.
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