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Abstract Architecture for Task-oriented Multi-agent
Problem Solving

Jiřı́ Vokřı́nek, Antonı́n Komenda, and Michal Pěchouček

Abstract—Problem solving and planning in decentralized envi-
ronments is a key technical challenge in numerous industrial appli-
cations, ranging from manufacturing, logistics, virtual enterprizes
to multirobotics systems. We present an abstract architecture of a
multiagent solver and respective algorithm providing decomposi-
tion, task allocation, and task delegation. Various features of the
abstract architecture, such as computational complexity or admis-
sibility of the underlying optimization heuristics, are analyzed in
the paper. Four instances of the abstract architecture implemen-
tations are given to demonstrate the applicability of the abstract
solver in a wide variety of real-problem domains.

Index Terms—Algorithms, complexity, distributed planning and
problem solving, multiagent applications, multiagent systems, task
allocation, task delegation.

I. INTRODUCTION

THE PROBLEM of distributed decision making, decentral-
ized planning, and controlling entities in heterogeneous

distributed environments is crucial for many application do-
mains [1]. Existing centralized methods depend on one central-
planning system that gathers all required data about decentral-
ized entities before the planning process starts. This approach
faces various difficulties. One problem is the need for shar-
ing private knowledge and information about the actual status
of these entities. The other problem is the need for real-time
replanning based on environments and conditions changing dy-
namically in time. We present an approach, where each entity is
in charge of suggesting their individual plans, where coopera-
tion, resource sharing, and deconflition is solved by methods of
negotiation.

The problem of distributed planning and problem solving
has been often discussed in the artificial intelligence planning
and multiagent research communities recently (e.g., [1]–[4]).
Distributed planning has been viewed as either 1) planning
for activities and resources allocated among distributed agents;
2) distributed (parallel) computation aimed at plan construc-
tion; or 3) plan-merging activity. In this paper, we are solving
the problem by algorithms based on task allocation and local
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resource planning in cooperative environments and use the del-
egation for continual solution improvement, which is performed
in noncritical time. The paper is divided into two parts presenting
1) abstract multiagent solver, problem definition, solver archi-
tecture, and algorithms, including discussion of its computa-
tional complexity and conditions of strategies admissibility and
2) examples of application areas and description of implemented
multiagent systems.

II. MULTIAGENT SOLVER

Multiagent-planning approaches are used for solving a wide
variety of planning problems. As analyzed by Brafman and
Domshlak [5], the multiagent-planning techniques can be ben-
eficial for such problems, where the domain sizes of individ-
ual agents are considerably smaller (e.g., in logarithmic rela-
tion to each other) than the overall size of the problem (even
if the planning complexity of an individual agent is expo-
nential) and the number of dependencies between agents is
low.

The distributed planning and problem solving has been ana-
lyzed by Durfee [1]. One of the related strategies discussed is
a task-sharing approach. The principle is based on passing of
tasks from a busy agent to a vacant agent(s). The process can be
summarized in four basic steps.

1) Task decomposition: The tasks of agents are decomposed
into subtasks. Sharable subtasks are selected.

2) Task allocation: The selected tasks are assigned to the
vacant agents or agents, which ask for them.

3) Task accomplishment: Each agent tries to accomplish its
(sub)tasks. The tasks, which need further decomposition
are recursively processed and passed to other agents.

4) Result synthesis: The results of the tasks are returned to
the allocating agent, since it is aware how to use it in the
context of the higher tasks.

From the perspective of distributed problem solving, task
allocation and the result synthesis are the most crucial parts.
However, from the planning perspective, the other two phases
are more important. The allocation problem is usually solved by
contracting and negotiation techniques, which imply problems
related to the resource allocation domain, e.g., cross booking,
overbooking, backtracking, and others. In the allocation phase,
a hierarchy of agents is established, which may not be fixed in
heterogeneous multiagent systems.

The decomposition and delegation principle is widely used in
agent-based approaches for problem solving and planning, and
shows great applicability to realistic problems. Taking into ac-
count Brafman and Domshlak’s analysis, Durfee’s task-sharing
approach efficiency is tightly bound to the solver’s ability to
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Fig. 1. Abstract architecture of agent-based solver/planner.

reduce the problem sizes for individual agents and keeping the
dependencies between agents low.

In the domains, where the optimization/planning problem can
be decomposed into independent tasks the multiagent approach
shows its benefits. Such a task can be allocated and executed
by different agents with low or no influence on each other. In
this paper, we assume that such problem decomposition exists.
In the rest of the paper, we assume that tasks are independent if
not stated otherwise.

We can define the abstract multiagent solver architecture as a
composition of three types of agents (see Fig. 1).

1) Task agent: This agent is for preprocessing of the problem.
It should use a domain-specific heuristic, generic ordering
strategy, and randomized method.

2) Allocation agent: This agent is for problem decomposition
into tasks and delegation of the tasks to resource agents. It
maintains task allocation and result synthesis. This agent’s
strategies and algorithms are domain-independent.

3) Resource agent: This agent is for individual case-specific
resource planning. In case of further decomposition, the
task is handed over to another task agent.

The multiagent system built upon this architecture is com-
posed of one task Agent, one allocation agent, and a set of re-
source agents. The resource agents represent distributed nature
of the multiagent problem.

For complex hierarchical systems, this abstract architecture
can be reflected in the multiagent system recurrently, it can be
reduced (i.e., one agent undertakes a role of more than one ab-
stract agent type), or it can be parallelized (more abstract solvers
are instantiated with potentially overlapping agents, e.g., sev-
eral task agents or allocation agents handling various problems
in parallel). In large systems, concurrent interactions may arise
that need to be handled. The agents’ interactions are guided by
interaction protocols, which are mostly built on Smith’s contract
net protocol (CNP) [6].

A. Multiagent Problem

The multiagent solver uses the principles of problem decom-
position and delegation to autonomous agents that solve parts of
the problem individually. The overall solution is then obtained
by merging the individual agents’ results.

The optimization based on CNP interactions in cooperative
environments is usually described as utilitarian social welfare
maximization [7]. Therefore, the abstract algorithm objective
function can be defined as maximization of social welfare, which
is as follows:

sw =
∑
a∈A

ua (1)

where A = a1 , . . . , an is the population of agents and ua is the
utility of agent a. In our case, the social welfare can be computed
as a sum of resource agents (R ⊂ A) utilities that can be defined
as follows:

ua =
∑
t∈Ta

(rew(t) − cost(t, a)) =

(∑
t∈Ta

rew(t)

)
− cost(Ta)

(2)
where Ta is a set of tasks allocated to the agent a ∈ R, rew(t)
is a reward for fulfilling task t, cost(t, a) is the cost of agent a
to perform task t, and

cost(Ta) =
∑
t∈Ta

cost(t, a) (3)

is the cost of the overall plan of an agent. The total reward for
fulfilling a set of all tasks T is as follows:

rew(T ) =
∑
a∈R

rew(Ta) =
∑
a∈R

∑
t∈Ta

rew(t) (4)

so the social welfare can be expressed as follows:

sw = rew(T ) −
∑
a∈R

cost(Ta) = rew(T ) −
∑
t∈T

cost(t, a). (5)

Since we assume the same quality of task fulfilling by any agent,
the reward k = rew(T ) is not influenced by the allocation of
tasks to the agents. We can derive social welfare as follows:

sw = k −
∑
t∈T

cost(t, a). (6)

As denoted earlier, the goal of CNP-based multiagent optimiza-
tion in cooperative environments is social welfare maximization.
Given by (6), it is the same as minimization of solution cost,
where cost(t, a) is evaluated by the resource agent a undertaking
task t. The objective function of the abstract solver is then∑

t∈T
cost(t, a). (7)

The task allocation stage of the solver searches for the best
suitable mapping of the tasks T to the resource agents R that
minimizes the objective function given by (7). We can define
the goal of the allocation as finding such a partition P of the set
of tasks T that

argmin
P

v∑
i=1

cost(Ti) (8)
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where v is the number of resource agents, Ti is a subset of tasks
allocated to the resource agent ai , cost(Ti) is the cost of the
overall plan of agent ai performing Ti defined by (3), and

Ti ⊆ T ,

v⋃
i=1

Ti = T (9)

∀i, j : Ti ∩ Tj = ∅ iff i �= j. (10)

B. Abstract Algorithm

The abstract algorithm representing the presented multiagent
solver attempting to minimize objective function defined by (7)
is captured by Algorithm 1. According to the abstract architec-
ture depicted in Fig. 1, it contains three phases as following.

1) The first phase of the function solve is task preprocess-
ing provided by the task agent. The ordering heuristic
represents case-specific sorting of the tasks to increase the
solver’s efficiency in the particular domain. In some cases,
the ordering has no influence, but in others, it may pro-
vide significant improvement especially in domains with
stronger task dependencies.

2) The second phase is iteration over all tasks and allocation
performed by the allocation agent minimizing the inser-
tion cost computed by resource agents (the allocateCNP
function). As part of this iteration, the dynamic improve-
ment based on cooperation of allocation agent and all
resource agents takes place—the improvement strategy is
applied to every resource agent after allocation of each
task (see following for the description of improvement
strategies).

3) The third phase of the solve function is the final im-
provement of the solution. After allocation of all tasks the
improvement strategy is executed by all resource agents.

The algorithm is based on local optimization of a single-task
insertion and subsequent improvement. Each iteration of the
algorithm provides a greedy (order-dependent) task allocation
supported by locally optimized solution of resources utilization
(which can be seen from global point of view as hill-climbing
search). The algorithm does not use any backtracking mecha-
nism or exhaustive search of the state space. It has a significant
impact on the algorithm’s computational complexity (see Sec-
tion II-C), but it is susceptible to finding locally efficient solution
only. The global solution quality is improved by execution of
improvement strategies.

The resource agent uses a case-dependent resource-planning
heuristic for these computations. The functions for allocation
are as follows.

1) Insertion estimation costestI (t, a): The estimation of the
cost of the task insertion. It represents the increase of the
agent’s a cost function caused by undertaking the task t.

2) Insertion costinsert(t, a): The real cost of the task inser-
tion. This value is determined by adding a new task t to
the plan of the agent a in the current state. It is the result of
the particular resource-planning algorithm of the resource
agent.

The opposite functions used by improvement strategies are
as follows.

1) Removal estimation costestR (t, a): The estimation of the
cost of the task removal. It represents the decrease of the
agent’s a cost function caused by dropping the task t.

2) Removal costremove(t, a): The real cost of the task re-
moval. This value is determined by removing the task t
from the plan of agent a in the current state. It is the re-
sult of the particular resource-planning algorithm of the
resource agent.

The allocation in the CNP part of the Algorithm 1 is based
on the determination of the winner agent. The winner of task t
is a resource agent a with the lowest insertion cost; therefore,

winner = argmin
a∈R

costestI(t, a). (11)

The allocation agent allocates an unallocated task t ∈ T , where
∀ai ∈ R : t /∈ Tai

to a winner agent a

allocate(Ta , t) ⇒ t ∈ Ta (12)

provided that local plan of agent a exists and the agent a is
able to fulfill this task using the plan for the cost estimation
costestI(t, a) used in (11).
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One of the improvement strategies (see following) is based on
identification of the most resource consuming task of resource
agents. We define worst task tw of agent a as follows:

tw = argmax
t∈Ta

costestR(t, a) (13)

i.e., the savings (difference of the total plan cost with and without
this task) are maximized.

The improvement strategies basically swap tasks between
agents—we say an agent ai delegates task t ∈ Ti to an agent aj

delegate(Ti , Tj , t) ⇒ t /∈ Ti ∧ t ∈ Tj . (14)

The admissible delegation of task t from agent ai to agent
aj , where i �= j is a delegation that satisfies the improvement
condition

costestR(t, ai) − costestI(t, aj ) > 0. (15)

The improvement strategies used by abstract algorithm are as
follows (see Algorithm 2 for more details).

1) Delegate worst (DW): Each resource agent ai identifies
its worst task tw according to (13) and tries to delegate it
to another agent aj if the improvement condition defined
by (15) holds and aj is the allocation winner according to
(11).

2) Delegate all (DA): Each resource agent ai delegates all
its tasks Ti to the winner of each task if the improvement
condition is satisfied.

3) Reallocate all (RA): Each resource agent successively re-
moves all its tasks from the plan and allocates them again
using the CNP strategy. The result of the allocation can
be the same as before task removing, or a change of the
position of the task in the current agent plan, or delegation
to another agent. To ensure proper function of RA im-
provement strategy, we require for successive removing
and inserting of task t from/to agent a that

costinsert(t, a) ≤ costremove(t, a) (16)

i.e., when removing and reinserting task t ∈ Ta , the
cost(Ta) does not increase.

C. Complexity Analysis

The general computational complexity of the multiagent
solver is introduced in [5]. Using transformation of the
multiagent-planning problem to the distributed constraint sat-
isfaction problem, the worst case time complexity of the multi-
agent planning is upper bounded by

f(I) × exp(comm) + exp(int) (17)

where f(·) is the factor inducted by requesting each agent to
plan, while committing to a certain sequence of actions, I is
the complexity of an individual agent’s planning, exp(comm)
represents a factor exponential in min–max number of per-agent
commitments, and an additive factor exp(int) represents the
interactions of agents.

The consequences of (17) lead to interesting features of the
multiagent solver, such as that there is 1) no direct exponential
dependence on the number of agents; 2) no direct exponential
dependence on the size of the planning problem or size of the
joint plan; and 3) no direct exponential dependence on the length
of individual agent plans [5].

In our case, the feature 2) resulting from (17) does not have
a strong impact if the decomposition algorithm of the alloca-
tion agent is exponential because the size of its problem is the
same as the size of the overall problem, but for the resource
agents (and other subordinate agents in the case of a complex
hierarchical structure) this feature holds. However, the exponen-
tial factors are usually reduced by the polynomial heuristics—
decomposition, allocation, optimization, and resource-planning
strategies implemented in real applications. The ordering strat-
egy of the task agent does not have a strong influence on the
worst case complexity because of its additive nature and low
complexity (provided that tasks can be compared in constant
time). The multiagent solver benefits in the domains, where
problem can be easily decomposed to independent tasks, and/or
where the polynomial heuristics for the resource planning exist.

For the abstract algorithm (see Algorithm 1), (17) can be
represented as follows:

n × log(n) + n × Oalloc + n × m × Oimpr (18)

where n denotes the number of tasks and m is the number of
resource agents. The first part represents the ordering heuristic
and its complexity corresponds to the complexity of standard
sorting algorithms. The middle part is the complexity of the allo-
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cation part of the algorithm and the last part is the improvement
part of the algorithm.

The allocation and improvement time complexities of the
algorithm are defined as follows:

Oalloc = m × O(costestI(t, a)) + O(costinsert(t, a))

Oimpr = fi(n′)

where n′ = n/m is the average number of tasks allocated to a
particular resource agent and fi(n′) is the factor representing the
complexity of the implemented agents’ improvement strategy.
We assume

O(costestI(t, a)) = O(costinsert(t, a)) = fr(n′)

O(costestR(t, a)) = O(costremoval(t, a)) = fr′(n′)

where fr(n′) is the factor representing the complexity of the
implemented agents’ resource-planning strategy for the task in-
sertion and fr′(n′) is the factor representing the complexity of
the implemented agents’ resource-planning strategy for the task
removal. Therefore, the general worst case time complexity of
the presented abstract algorithm is as follows:

n × (log (n) + m × (fr (n′) + fi (n′))) . (19)

The complexity of improvement strategies defined in Sec-
tion II-B are as follows:

fiDW (n′) = Oworst + fr′(n′) + m × fr(n′)

fiDA(n′) = fiRA(n′) = n′ × (fr′(n′) + m × fr(n′))

where Oworst is the complexity of identification of the worst
task in the plan, i.e., finding the task with greater costestR(t, a).
It can be upper bounded by the iteration through all n′ tasks
and computation of removal cost of each one, so its worst case
complexity is upper bounded by Oworst = O(n′ × fr′(n′)). For
combination of all described improvement strategies, the im-
provement complexity is upper bounded by

fi(n′) = n′ × fr′(n′) + m × n′ × fr(n′). (20)

The factor m × n′ = m × (n/m) = n, so the improvement
complexity has no relation to the number of agents. Combining
(19) and (20) and taking n′ = n, the worst case time complexity
of the abstract algorithm is as follows:

n × log(n) + n2 × fr′(n) + m × n2 × fr(n). (21)

The presented complexity analysis shows the polynomial im-
pact of the decomposition and delegation principles used by
the multiagent abstract solver. The impact of the two factors
introduced by (17) is the following:

1) the complexity of the operations of resource agent are
multiplied by n2 ;

2) the influence of the number of resource agents is linear.
The complexity analysis shows us an important feature of

agent-base solver. When using polynomial heuristics for task
insertion and removal, the implemented multiagent solver pro-
vides polynomial worst case complexity. Together with linear
computational scaling with the number of agents makes the pre-
sented abstract architecture suitable for many application areas.

In real-application areas, ordering heuristics can be found that
result in allocation with no need of using improvement strategies
(e.g., production-planning system described in Section III-D).
In other cases, the planning of resource agents is implemented
with low complexity (e.g., linear) and the improvement strat-
egy has greater importance. In Section III, we present several
applications developed using the described abstract multiagent
solver.

D. Incremental Improvement Strategy

The basic multiagent solver can be enhanced by the incre-
mental improvement strategy. Algorithm 1 allocates the tasks
and runs improvement strategies (both dynamic and final), keep-
ing the computational complexity low (i.e., guaranteeing a good
response time of the algorithm). In many cases, it is benefi-
cial to perform incremental improvement of the solution when
we have enough time to wait for better results or the environ-
ment changes dynamically. The changes of the task constraints,
resources availability, and execution uncertainty affects the effi-
ciency of the static plan during execution. Algorithm 1 optimizes
(7) in a single run upon conditions that are valid at the time of
algorithm execution. When some conditions change, the solu-
tion quality diverts. In such a case, the incremental improvement
strategy should be used to keep the solution up to date with the
dynamic environment changes and/or improve the solution over
the time.

The nature of the task allocation process of the multiagent
solver enables us to run the improvement strategies continuously
and interrupt its improvement during any run without loosing the
correctness of the solution (assuming the delegation as atomic
process). The incremental improvement strategy described in
Algorithm 3 is an anytime algorithm monotonically improving
the quality of the solution. The improvement strategies (see
Algorithm 2) are executed until the solution is no longer being
improved (i.e., the overall cost of the solution defined by (7)
does not change between iterations).
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The inner loop iterates over all resource agents and pro-
vides the same features (complexity and convergence) as the
improvement part of Algorithm 1. The outer loop terminates
when the quality of two consequent solutions is the same.

E. Resource Agent Strategy Admissibility

The presented multiagent solver features strongly depends
on the functions provided by the resource agents. We investi-
gate the allocation process correctness and delegation stability,
and define the constraints to functions provided by admissible
resource agent strategy.

When using standard CNP, we require the estimation func-
tions of resource agent a to provide accurate estimations of
inserting/removal of task t, e.g.,

costestI(a, t) = costinsert(a, t) (22)

costestR(a, t) = costremove(a, t). (23)

In the case of more advanced allocation protocols with back-
tracking (e.g., extended CNP [8]), this accuracy can be relaxed.
In all cases, these constraints defined on the resource agent func-
tions ensure that Algorithm 1 is able to find a local minimum
of the cost function (7) and to guarantee the proper behavior of
improvement strategies.

The estimation functions provided by resource agent strategy
are admissible only if

costestI(a, t) ≤ costinsert(a, t) (24)

costestR(a, t) ≥ costremove(a, t) (25)

where for the upper bound of the estimation error holds

|costinsert(a, t) − costestI(a, t)| < εI (26)

|costremove(a, t) − costestR(a, t)| < εR (27)

and delegation improvement condition according to (14) and
(15) is modified to

costestR(t, ai) − costestI(t, aj ) > εI + εR . (28)

Keeping the defined constraints (improvement condition, es-
timation error, and admissibility of estimation functions), the
execution of any of the improvement strategies results in re-
duction of the solution cost or the solution is unaffected (i.e.,
the new solution is not worse than the previous one) and the
incremental improvement strategy termination is ensured after
a finite number of steps (if the environment does not change
during the execution of the improvement algorithm).

Using features discussed in previous sections, we can define
the admissible resource agent strategy (its internal heuristics
and estimation, and allocation functions) has to:

1) use admissible estimation functions according to (24) and
(25);

2) bound the estimation error according to (26) and (27);
3) fulfill the improvement condition defined by (28) (the del-

egation is admissible if the solution cost improves);
4) when using the reallocate-all improvement strategy, (16)

must hold (i.e., when reallocating, the new solution has to
be better or at least the same as the previous one);

5) the algorithm execution time must be low compared to the
frequency of the environment changes (the environment is
considered static during the execution of the algorithm).

III. APPLICATIONS

Due to high flexibility, robustness, and scalability, the agent
technologies promise a wide industrial applicability [9] even in
the real-time environments with a need of dynamic reconfigu-
ration and replanning [10]. This section presents four examples
of the multiagent systems implemented using the presented ab-
stract architecture. It demonstrates the applicability of the con-
cept in a wide variety of real-problem domains—vehicle rout-
ing problems (VRPs), strategic mission planning, multirobot
frontiers exploration, and production planning. All presented
multiagent systems share the same abstract architecture, algo-
rithm, and improvement strategies. For each application domain,
a particular resource optimization heuristic has been designed
and implemented by the resource agents. All the presented sys-
tems’ implementations have low-computational complexity and
provide high-quality solutions.

A. VRP Solver

The VRP is a well-known optimization problem. The problem
is NP-hard and is defined as routing of a fleet of gasoline delivery
trucks between a terminal and a number of service stations. The
trucks have load capacity limitations and deliveries have to be
accomplished at minimum total cost (distance traveled).

The agent-based approach to a variant of the VRP solver
has been presented, for example, in [11]. Zeddini et al. use
three types of agents—client, bidder, and vehicle agents. The
approach is based on the CNP allocation and the optimization
is based on exchange of tasks between the vehicle agents. The
vehicle agents use an insertion heuristic and improvement strat-
egy for task swapping between them. The error of the solution
(compared to the optimal solution) presented in the paper is
4%–29% for standard benchmark problems.

A similar approach has been used in [12] for a dynamic variant
of k-VRP (new tasks are added during the execution), where the
initial allocation is generated using a centralized algorithm. The
dynamic task allocation is made by the CNP protocol. Then, two
improvement phases are applied. The intraroute optimization
is applied to each agent route and interroute optimization is
performed between vehicle agents.

The VRP family solver built upon an abstract multiagent
solver, which is introduced by this paper is presented in [13].
The solver uses three ordering strategies, the combination of all
improvement strategies with dynamic improvement enabled or
disabled, and the resource agent algorithm implemented using
a standard cheapest insertion heuristic for traveling salesman
problem [14].

The objective function is based on the distance traveled by
vehicles (represented by resource agents) and fully corresponds
to (7). The implemented RA strategy fulfills the improvement
conditions defined by (15) and (16) and admissibility conditions
defined by (22) and (23).
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Fig. 2. Example of the VRP solver result.

The complexity of the resource agent cost computation func-
tions is kept low, i.e., fr(n′) = O(n′) and fr′(n′) = O(1). The
worst case time complexity defined by (21) (using n′ = n/m)
is O(n3), which has been also proved experimentally on bench-
mark instances.

The example of the solution provided by the solver is in
Fig. 2. There are 52 nodes served by seven vehicles (an optimal
number of vehicles has been obtained). The circles in the nodes
represent the size of transportation demand. The quality of the
solution to the problem presented in Fig. 2 is 93.4% compared to
the optimal path length. We measure the quality as costs o lv e r

costo p t im
×

100[%], where costsolver is the solution cost provided by the
solver and costoptim is the cost of the best known solution. The
optimal vehicle’s path is depicted by thin green lines and the
solution produced by the multiagent solver is represented by
thick red lines.

For the 115 evaluated benchmark instances (standard VRP
benchmark problems), the multiagent solver provides solutions
with the quality of at least 81% compared to the optimal so-
lution with average quality better than 91% (corresponds to
solution error of 19%, respectively, 9%). The self-organizing
capability of the system successfully minimizes the number of
vehicles used. The results show that the application of dynamic
improvement strategy provides better results than batch process-
ing with final improvement strategy only. The best performance
has been reached using DA and RA improvement strategies. The
implemented solver demonstrates very good applicability of the
abstract multiagent solver to the family of routing problems and
easy adaptation to problem variants.

B. Strategic Mission Planning Using Social Commitments

The multiagent abstract solver presented in this paper has
been used in a system for distributed planning and coordination

in dynamic nondeterministic multiactor mixed-initiative envi-
ronment [15]. The system provides flexible planning, replan-
ning, and task allocation. The system addresses several issues
that have to be solved in order to fulfill the requirements on
a system planning in dynamic nondeterministic environments.
An overview of the problems is as follows.

1) Distributed planning: Planning in such an environment is
practically realizable only as a distributed process.

2) Distributed resource allocation: An integral part of the
planning process is resource allocation both of the acting
entities in the world and of the static resources, and as the
planning process is distributed, the resource allocation has
to be distributed as well.

3) Distributed plan execution and synchronization: Consti-
tuted distributed plan consisting of several personal plans
has to be executed by the entities. The personal plans need
to be coordinated in distributed manner, as the entities do
not know each other’s plans.

From the perspective of allocation agent, the planning pro-
cess can be divided into three phases: 1) the hierarchical task
network I-Plan planner [16] is used for creating an abstract plan
for a long-time horizon; 2) the plan instantiating process uses
a distributed resource allocation based on the CNP [6]; and
3) with the help of this protocol, the appropriate subordinate
agents (resource agents) are found and the responsibilities for
the plan actions are fixed. The internal resource agents opti-
mization uses the as-early-as-possible scheduling heuristic. The
heuristic causes the earliest possible execution of the plan ac-
tions, which affects the length of the whole plan in the nonde-
terministic environment. The effect is directly proportional to
the amount of nondeterminism in the world (which has been
simulated as random prolonging of the actions durations). The
agents’ hierarchy in the system is captured by Fig. 4, there is a
commander creating tasks for builders, builders implementing
the abstract task agent and allocation agent roles in parallel,
and finally, we have a set of trucks implementing the abstract
resource agent roles.

All plans are described in the form of social commitments
substituting plan actions. The commitment is a knowledge-base
structure describing agent’s obligation to change the world-state
and a set of rules defining what the agent should do if the obliga-
tion is not satisfiable [17]. The commitments enable expressive
description of the decommitment rules, and thus, the replanning
process, it captures the improvement strategies executed on the
moment when the environment changes in the way that collide
with the plan.

In other words, the replanning process (i.e., the plan im-
provement process) by means of social commitments can be
described as successive recommitting [17]. For the decommit-
ting purposes, three basic decommitment rules were used: full
decommitment, delegation, and relaxation [18].

The deployment scenario of the system is a disaster relief
operation, where the resources have to be transported to the
impacted zone [19]. There are material resources, emergency
units, and transport units in the scenario. The emergency units
create plans and request the transportation for itself and for
required material resources. The problem is to find such a global
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Fig. 3. Strategic mission planning system—scenario island screenshot.

Fig. 4. Strategic mission planning system—hierarchy of agents.

plan that all units and material are transported to the demanded
area as soon as possible using limited transportation resources
(see a screenshot of the scenario island in Fig. 3).

The entire system provides fast convergence to the effi-
cient solution with time complexity of O(n3). The heuristic
of the resource agent strategy is admissible in terms defined in
Section II-B and provides fr(n′) = O(1) and fr′(n′) = O(n′).
The plan execution stability in the dynamic environment is en-
hanced using improvement strategies captured by decommit-
ment rules, and thus, incrementally invoked abstract algorithm
presented in Section III.

C. Cooperative Frontiers Exploration

The presented multiagent solver has been also utilized for
cooperative frontiers exploration problem [20]. The problem
is to find the shortest path for a convoy of vehicles through
a partially known urban area. The street map of the area is
a priori known, but the actual condition of the routes is not.
There is the convoy moving through the city using a path-

Fig. 5. Cooperative frontiers exploration—scenario screenshot.

planning algorithm that incorporates the information obtained
by a set of small autonomous vehicles. These vehicles explore
the area ahead of the convoy (see the scenario screenshot in
Fig. 5).

The goal of the multiagent system is to find the shortest path
through the area ensuring that 1) the convoy will not stop or u-
turn because of a street blockade and 2) the total traveled path of
all vehicles is minimized. The multiagent system is composed
of one convoy agent (task agent and allocation agent role) and a
set of unmanned ground vehicles (UGV) agents (resource agent
role). Besides path planning and navigating through the city, the
convoy agent generates a set of frontiers for exploration [21].
In this case, it is not a classical mapping task in an unknown
area, but the frontiers represent points of interests in the known
street map that should be investigated to ensure the convoy may
freely pass through the desired route. A similar robotic problem
has been also solved using a multiagent system for distributed
robotic planning, e.g., in [22]. The first goal (convoy nonstoping
movement toward a target) is secured using the incremental re-
planning algorithm for convoy path planning based on anytime
planning algorithm D-star [23]. The second goal (minimization
of the traveled path) is handled by a multiagent solver using the
presented architecture and algorithms. It is shown [20] that the
multiagent solver provides almost real-time response and signif-
icantly reduces the convoy traveled path even with small number
of UGVs keeping the overall traveled distance overhead low.

The convoy agent dynamically creates points of interests (ex-
ploration frontiers) and allocates them to the UGV agents using
Algorithm 1. In the case of any new information is discovered,
Algorithm 3 is used and also new frontiers are generated and al-
located (or some frontiers can be removed). The UGV agents use
a route optimization heuristic that attempts to minimize the trav-
eled distance similar to the VRP described earlier. It fulfills the
improvement condition defined by (15) and admissibility con-
ditions defined by (24) and (25). The computational complex-
ities of the strategy are fr(n′) = O(n′) and fr′(n′) = O(1).
The experimentally evaluated worst case time complexity of the
multiagent solver has been upper bounded by O(n3).
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Fig. 6. Screenshot of multiagent production-planning system.

D. Production Planning

Classical-planning systems (using scheduling algorithms
with various heuristics, constraint logic programming, genetic
algorithms, and simulated annealing [24], [25]) work centrally
and allocate resources usually in one run for every product
(order) presented in the system. These methods use mostly
stochastic algorithms and generate near-optimal solutions for
minimization of defined criteria (e.g., a sum of weighted tar-
diness and inventory costs). Such a solution is fully sufficient,
while the required replanning and rescheduling affects the en-
tire plan. The plan is usually completely rebuilt and a random
aspect of the algorithms can cause major (unwanted) changes
in plans after replanning. This might not be suitable for many
manufacturing areas. With physical distribution of the produc-
tion units, it is advantageous to decompose and distribute the
planning problem [1].

The multiagent technology addresses all the phases of the
manufacturing decision-making support, while there are few
implementations of multi-agent systems that cover more than
a single stage. There are solutions for low-level scheduling or
control systems, the product configuration and quotation phases
to short-term and long-term production planning and supply-
chain management [26].

The example of the system that uses the same conceptual fun-
damentals as multiagent abstract solver presented by this paper
is presented in [27] and [28]. One of the goals of the multiagent
system is to create a production plan for middle- and long-
term horizon to give an overview of resource utilization (see
Fig. 6 for a screenshot of a multiagent production-planning sys-
tem). The production resources are represented by the resource
agents maintaining the constrains and capabilities of individual
production workshops. The task agent uses a classical task or-
dering heuristic based on weighted earliest deadline first, which
significantly improves the solution and there is no need for im-
provement strategy execution after allocation phase of the batch
of tasks. The production-order decomposition and planning is

provided by the planning agent, which allocates the parts of the
production order to the resource agents using the CNP according
to Algorithm 1. In case of environment changes (e.g., an update
of production times estimation, machines breakdowns, delays
in production, etc.), Algorithm 3 is executed. The solution of the
solver is optimal according to the cost computed as a weighted
delay penalty.

Resource agents use an admissible strategy [according to
(22), (23), and (15)] that minimizes the weighted average de-
lay of the production orders (see [29] for more details). The
computational complexities of resource agent algorithms are
fr(n′) = fr′(n′) = O(n′); therefore, the overall solver com-
plexity is upper bounded by O(n4).

IV. CONCLUSION

This paper describes an abstract multiagent solver architec-
ture and an algorithm for implementing a wide variety of prac-
tical multiagent-planning and problem-solving systems. The al-
gorithm maximizing social welfare of the cooperative agent
community is introduced and analyzed. CNP-based task alloca-
tion and solution improvement using task delegation provides
a powerful tool for problem solving when keeping the compu-
tational complexity within reasonable limits. We also discuss
the limitations and admissibility constraints of the resource op-
timization heuristic that has to be designed to implement the
multiagent solver for a particular problem domain and define
the resource agent strategy admissibility.

The solver benefits in domains, where decomposition of a
problem into independent tasks is possible. Finding indepen-
dent subsets of tasks significantly reduces the need for interac-
tions between agents. The tasks are planned and executed by
individual agents independently, and the overall solution is then
merged from the partial ones. The system is able to balance
the allocation of the tasks to the agents and provide anytime
monotonically improved solution.

The applicability of the presented abstract multiagent solver
is demonstrated on several real systems operating in the do-
mains of VRPs, strategic mission planning, multirobot frontiers
exploration, and production planning. In all application areas,
the implemented system provides low-computational complex-
ity (O(n3) or O(n4)) with good solution quality.
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