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Abstract
We focus on solving two-player zero-sum
extensive-form games with perfect information and
simultaneous moves. In these games, both players
fully observe the current state of the game where
they simultaneously make a move determining the
next state of the game. We solve these games by a
novel algorithm that relies on two components: (1)
it iteratively solves the games that correspond to
a single simultaneous move using a double-oracle
method, and (2) it prunes the states of the game us-
ing bounds on the sub-game values obtained by the
classical Alpha-Beta search on a serialized variant
of the game. We experimentally evaluate our
algorithm on the Goofspiel card game, a pursuit-
evasion game, and randomly generated games.
The results show that our novel algorithm typically
provides significant running-time improvements
and reduction in the number of evaluated nodes
compared to the full search algorithm.

1 Introduction
Non-cooperative game theory provides a formal mathemati-
cal framework for analyzing the behavior of interacting self-
interested agents. Recent advancements in computational
game theory led to many successful applications of game-
theoretic models in security domains [Tambe, 2011] and im-
proved the performance of computer game-playing in a va-
riety of board and computer games (such as Go [Enzen-
berger et al., 2010], Poker [Gibson et al., 2012], or Ms. Pac-
Man [Nguyen and Thawonmas, 2012]).

We focus on fundamental algorithmic advances for solv-
ing large instances of an important general class of games:
two player, zero-sum extensive-form games (EFGs) with per-
fect information and simultaneous moves. Games in this
class capture sequential interactions that can be visualized
as a game tree. The nodes correspond to the states of the
game, in which both players act simultaneously. We can rep-
resent these situations using the normal form (i.e., as matrix
games), where the values are computed from the succeeding
sub-games. Many well known games are instances of this
class, including card games such as Goofspiel [Rhoads and
Bartholdi, 2012], variants of pursuit-evasion games [Littman,

1994], as well as several games from general game-playing
competition [Genesereth et al., 2005].

Zero-sum simultaneous move games can be solved in poly-
nomial time by backward induction [Buro, 2003]. How-
ever, this straightforward approach is not applicable for
larger instances of games. Therefore, variants of game-
tree search algorithms without theoretical guarantees have
been mostly used in practice [Kovarsky and Buro, 2005;
Teytaud and Flory, 2011]. Only recently, the backward in-
duction algorithm has been improved with the pruning tech-
niques by [Saffidine et al., 2012]. However, the presented ex-
perimental results did not show significant running time im-
provement compared to the full search. Alternatively, simul-
taneous move games can be addressed as generic imperfect-
information games and solved using the compact sequence
form [Koller et al., 1996; von Stengel, 1996], however, this
approach cannot exploit the specific structure of the game,
thus having significantly higher memory and running-time re-
quirements compared to the backward induction.

One of the main components of the backward induction al-
gorithm is solving matrix games in each state of the game.
The key to improve the performance of the algorithm is to
solve these games using as few evaluated sub-games as pos-
sible, i.e., by considering only a limited number of moves for
each player in each state of the game. This can be achieved
using a double-oracle algorithm that was highly successful in
practice when solving large normal-form games [McMahan
et al., 2003; Jain et al., 2011; Vanek et al., 2012]. The main
idea of this method is to create a restricted game in which
the players have a limited number of allowed strategies, and
then iteratively expand the restricted game by adding best re-
sponses to the current solution of the restricted game.

In this paper we present a novel algorithm for solving zero-
sum extensive-form games with simultaneous moves based
on the double-oracle method. Additionally, we reduce the
number of evaluated sub-games in each stage by estimating
the sub-game values using the standard Alpha-Beta search
on serialized variants of the game. After providing technical
background, we describe our novel algorithm and give theo-
retical guarantees of its correctness and computational com-
plexity. In contrast to the currently best known pruning al-
gorithm for this class of games [Saffidine et al., 2012], our
experimental results show dramatic improvements, often re-
quiring less than 7% of the time of the full search.



Figure 1: Example of a game tree for zero-sum simultane-
ous move game. Each stage is represented as a matrix game,
solution of which is propagated to the predecessor.

2 Technical Background and Related Work
A perfect-information simultaneous-moves game can be vi-
sualized as a game tree, where each node consist of a normal-
form game (or a matrix game, see Figure 1) representing si-
multaneous action of both players. We refer to the nodes as
the stages of the game and thus term the matrix game repre-
senting this situation as a stage game; we denote S to be a set
of all stages of the game. We are concerned with zero-sum
games; hence, we specifically name the two players as Max
and Min, where the first one is maximizing, the second one is
minimizing the utility value. In each stage s ∈ S , both players
have some number of possible actions to play; the Max player
has ns actions, indexed by i, and Min player has ms actions to
play in stage s, indexed by j. We omit the lower s index, if the
stage is clear from the context. Performing a joint action (i, j)
in stage s leads to another stage s′ that we denote s′ = si, j.

To solve a game is to find a strategy profile (one strategy
for each player) that satisfies certain conditions. Nash equi-
librium (NE) is the most common solution concept; a strat-
egy profile is in NE if all players play the best response to the
strategies of the opponents. For simultaneous-moves EFG,
a pure strategy is a selection of an action in each stage, and
a mixed strategy is a set of probability distributions over ac-
tions in each stage. The actions in a stage, that are used with
non-zero probability, form the support of NE. The expected
utility value gained by each player when both players follow
the strategies from NE is termed the value of the game. We
use u(s) to denote both the utility value of leaf s in the game
tree (when s is terminal) as well as the value of the sub-game
of stage s (i.e., sub-tree of the original game tree rooted in s).

2.1 Solving EFGs with Simultaneous Moves
A zero-sum simultaneous-moves EFG can be solved by the
backward-induction algorithm [Buro, 2003] – the algorithm
searches through the game tree in the depth-first manner, and
after computing the values of all the succeeding sub-games,
it solves each stage game (i.e., computes a NE in each stage),
and propagates the calculated value to the predecessor. The
result of the backward-induction algorithm is a refinement of
NE called subgame-perfect Nash equilibrium – the selected
strategy profile forms the NE in each sub-game. NE in a zero-
sum stage game can be found as a solution of a linear program
(e.g., see [Shoham and Leyton-Brown, 2009, p. 88]).

Simultaneous Moves Alpha-Beta Search
The currently best known pruning method for the backward-
induction algorithm for simultaneous-moves games was pro-
posed by Saffidine et al. [2012]. The main idea of the algo-
rithm is to reduce the number of the recursive calls of the
backward-induction algorithm by removing dominated ac-
tions in every stage game. For each successor si, j of a stage
s, the algorithm maintains bounds on the game value u(si, j).
The lower and upper bounds represent the threshold values,
for which neither action i nor action j is dominated by any
other action in the current stage game s. These bounds are
calculated by linear programs in the stage s given existing
exact values (or appropriate bounds) of the utility values of
all the other successors of the stage s. If they form an empty
interval (the lower bound is higher than the upper bound), a
pruning occurs and the dominated action is not considered in
this stage any more.

The algorithm proposed in this paper differs in two key as-
pects: (1) instead of removing the dominated strategies we
start with a small restricted game that is iteratively expanded
by adding best-response actions in this stage; and (2) we use
the standard Alpha-Beta search on serialized variants of the
game in order to obtain bounds on the game values of the
successors rather than calculating these bounds solely from
information in this stage.

3 Method
Our algorithm enhances the backward-induction algorithm
with the double-oracle method: (1) in each stage of the game
it creates a restricted stage game by allowing the players to
play only one action in this stage, then (2) it iteratively solves
the restricted stage game, and (3) expands the restricted game
by adding, for each player, a best response to the current strat-
egy of the opponent in the solution of the restricted game.
When neither of players can improve the solution of the re-
stricted game by the best response, the algorithm has found
the solution of the full stage game, since both players are
playing the best responses against each other.

While seeking for the best response, the algorithm esti-
mates the quality of the actions using the classical Alpha-Beta
search on serialized variants of the game. The serialized vari-
ants are modifications of the original game, where the play-
ers move sequentially and the second player to move knows
what action the first player has made in the stage. Depending
on the order of the serialization, solving this modified game
yields either the upper or the lower bound on the value of the
original game: if the Max moves second after the move has
been made by the Min player, the maximizing player has an
advantage (Max selects different best response to each action
of the Min player) and the upper bound is calculated, if the
serialization is reversed, the lower bound is calculated.

Definitions
In the description of the algorithm we use the following no-
tation: in a stage s we use pi, j to denote the lower (or pes-
simistic) bound on the game value of the sub-game rooted in
stage si, j; oi, j denotes the upper (or optimistic) bound. The
restricted game is defined through the sets of actions added
to the restricted game – I represents the set of actions of



Algorithm 1 double-oracle (stage,lower bound,upper bound)

Require: s – current stage; α,β – bounds for the game value
1: if s is terminal state then
2: return u(s)
3: if alpha-betaMin(s,minval,maxval) =

= alpha-betaMax(s,minval,maxval) then
4: u(s)← alpha-betaMin(s,minval,maxval)
5: return u(s)
6: initialize restricted action sets I and J with a first action

in stage s
7: pI,J ← alpha-betaMin(sI,J ,minval,maxval)
8: oI,J ← alpha-betaMax(sI,J ,minval,maxval)
9: repeat

10: for i ∈ I, j ∈ J do
11: if pi, j < oi, j then
12: u(si, j)← double-oracle(si, j, pi, j, oi, j)
13: pi, j ← u(si, j); oi, j ← u(si, j)
14: 〈u(s), (x,y)〉 ← ComputeNE(I,J)
15: 〈i′, vMax〉 ← BRMax(s, α, y)
16: 〈 j′, vMin〉 ← BRMin(s, β, x)
17: if i′ = null then
18: return minval
19: else if j′ = null then
20: return maxval
21: α← max(α, vMin); β← min(β, vMax)
22: I ← I ∪ {i′}; J ← J ∪ { j′}
23: until α = β
24: return u(s)

Max player, J the set of actions of Min player. We denote
x ∈ Rn

+,0 to be the vector representing a mixed strategy of
the Max player, y ∈ Rm

+,0 represent a mixed strategy for the
Min player (

∑
i xi =

∑
j y j = 1). We use minval (or maxval)

to refer to minimal (or maximal) utility value in the game
(can be infinite). Methods alpha-betaMax/Min represent classi-
cal Alpha-Beta search and the lower index determines which
player has the advantage and moves as the second one. The
outcome of our algorithm is both the game value as well as
the strategy profile that forms the NE in each stage, for which
the double-oracle method was called.

3.1 Double-oracle in Stage Games
The pseudocode of the main method is depicted in Algo-
rithm 1. The evaluation of a stage immediately ends if it is
a terminal state of the game (line 1), or the bounds calculated
by serialized alpha-beta are equal (line 3). Otherwise, the al-
gorithm initializes the restricted game with an arbitrary action
(line 6) together with the bounds on this successor (lines 7-8).

In the main loop, the algorithm calculates the exact values
for all the successors included in the restricted game (lines 10-
13), following by the computation of a NE by solving the
linear program (line 14). The result of the computation is
the value of the restricted game u(s) and the strategy profile
represented as a pair of vectors (x, y). Next, the best-response
algorithms calculate new best-response actions in the current
stage for each of the players (lines 15-16). If one of the best-
response methods returns a null action, it means that none of

Algorithm 2 BRMax(stage, bound, opponent’s strategy)

Require: s – current stage; α – lower bound of the game
value; y – strategy of the Min Player

1: BRvalue ← α
2: iBR ← null
3: for i = {1, . . . , n} do
4: pi,J ← alpha-betaMin(si,J ,minval,maxval)
5: oi,J ← alpha-betaMax(si,J ,minval,maxval)
6: for j ∈ J ; y j > 0 ∧ pi, j < oi, j do
7: p′i, j ← max

(
pi, j,BRvalue −

∑
j′∈Jr{ j} y j′ · oi, j′

)
8: if p′i, j > oi, j then
9: continue with next i

10: else
11: u(si, j)← double-oracle(si, j, pi, j, oi, j)
12: pi, j ← u(si, j); oi, j ← u(si, j)
13: if

∑
j∈J y j · u(si, j) ≥ BRvalue then

14: iBR ← i; BRvalue ←
∑

j∈J y j · u(si, j)
15: return 〈iBR, BRvalue〉

the actions in this stage has an expected utility at least as good
as the bound (either α or β) that was found in a predecessor
of the stage s and a pruning occurs (lines 17-20). If the best-
response algorithms return valid best-responses, the bounds
on the value of the game in the stage s may be updated – the
lower bound may be increased, if the expected utility of the
best response of Min player to some strategy x is higher than
the current lower bound α (similarly for the upper bound β).
Over the iterations the size of the interval [α, β] decreases and
the algorithm terminates, when the best response algorithms
return the same value; the pessimistic and optimistic values
are equal, and the value of the sub-game rooted in stage s is
returned (line 23).

3.2 Best-response Action Calculation
The pseudocode of the methods for calculating the best-
response actions in a stage s of the game is depicted in Al-
gorithm 2 (for brevity we describe only the variant for the
Max player; the variant for Min is similar). The main idea
is to select an action with maximal expected utility given the
strategy of the opponent using as few recursive calls of the
double-oracle method as possible.

The algorithm pessimistically initializes the current best
value (line 1) and then evaluates each action of the Max
player. Considering an action i of the Max player, the al-
gorithm investigates those successors si, j, such that they can
be reached considering the strategy of the opponent (i.e.,
j ∈ J ; y j > 0), and the exact value u(si, j) is not known yet
(i.e., pi, j < oi, j). The algorithm calculates new current pes-
simistic bound for the game value of the successor si, j (line 7):
p′i, j equals to maximum of either the original bound (i.e., pi, j),
or the minimal possible value in order for the action i to be-
come the best response given the current strategy of the oppo-
nent y and the current value of the best-response (BRvalue), if
we assume that all other values u(si,J\{ j}) are equal to the op-
timistic values. If the new pessimistic value p′i, j is higher than
original optimistic value, the algorithm moves to the next ac-
tion i (line 9). Otherwise, the exact game value of the succes-



sor is calculated, and if the expected value of action i is higher
than the current best response value, the action is stored as the
best response (lines 13-14).

4 Theoretical Analysis
In this section, we first prove the correctness of the proposed
algorithm and then we formally analyze its performance.

4.1 Correctness of the Algorithm
First, we prove the correctness of the best-response algo-
rithms, starting from the usage of the classical Alpha-Beta
search on the serialized variants of the game.

Lemma 4.1. Let M be a matrix game with value v(M); let p
be the value of the perfect information game created form the
matrix game by letting the maximizing player move first and
the minimizing player second with the knowlege of the first
player’s action selection and o the value of the analogic game
in which the minimizing player moves first, then

p ≤ v(M) ≤ o.

Proof.

v(M) = max
x∈Rn

+,0

min
y∈Rm

+,0

xMyT = max
x∈Rn

+,0

min
y∈{0,1}m

xMyT ≥

≥ max
x∈{0,1}n

min
y∈{0,1}m

xMyT = p. (1)

Assuming always
∑

i xi =
∑

j y j = 1, the first equality is the
definition of the value of a zero-sum game, the second is the
fact that a best response can always be found in pure strate-
gies: if there was a mixed strategy best response with ex-
pected utility v and some of the actions form its support would
have lower expected utility, removing the action from the sup-
port would increase the value of the best response, which is a
contradiction. The inequality in (1) is a maximization over a
subset of the original set, which can give only a lower value.
Analogical proof holds for v ≤ o. �

Corollary 4.2. The serialized alpha-betaMax (alpha-betaMin)
algorithm computes the upper (lower) bound on the value of
the simultaneous moves sub-game defined by stage s.

Proof. Since it is known that the standard Alpha-Beta algo-
rithm returns the same result as the MiniMax algorithm with-
out pruning, we disregard the pruning in this proof. We use
the previous Lemma inductively. Let s be the current stage
and let M be the exact matrix game representing s. By induc-
tion we assume the algorithm computes for stage s some M′
so that ∀i, j M′i, j ≥ Mi, j. It means that the worst case expected
payoff of any fixed strategy in M′ is larger than in M; hence,
v(M′) ≥ v(M). The serialization used in alpha-betaMax as-
sumes the Min player moves first; hence, by Lemma 4.1 the
algorithm returns value o ≥ v(M′) ≥ v(M). The proof for
alpha-betaMin is similar. �

Corollary 4.2 shows that the bounds pi, j and oi, j in the al-
gorithms are correct. Assuming inductively the values u(si, j)
from all successors of a stage s are correct, the best-response
algorithms always return either a correct best response iBR

with maximal expected value given the strategy of the oppo-
nent, or null in case no action is better than the given bound.
Now we can formally prove the correctness of the main algo-
rithm.

Lemma 4.3. Let v be the value of the sub-game defined by
stage s then double-oracle(s, α, β) returns

v if α ≤ v ≤ β; minval if v < α; and maxval if v > β.

Proof. The basis for the correctness of this part of the algo-
rithm comes from the standard double-oracle algorithm for
zero-sum normal form games [McMahan et al., 2003].

Case 1: If the algorithm ends on line 24 and we assume
that all the recursive calls of the algorithm are correct, the
algorithm performs the standard double-oracle algorithm on
exact values for sub-games. The only difference is that the
best-response algorithms are bounded by α or β. However, if
the algorithm did not end on lines 18 and 20, these bounds
were never restrictive and the best-response algorithm has re-
turned strategies of the same value as it would without any
bounds.

Case 2: If the algorithm returns on lines 18 or 20, the situ-
ation is symmetric: WLOG we assume the condition on line
17 holds. We have to consider two possibilities. If the bound
α has not been updated during the iterations of the main loop
(line 21) and the algorithm finds a strategy y so that no best re-
sponse to this strategy has a higher expected value than α, the
strategy y proves that the value of the stage game is lower than
α and minval is returned. If the bound α has been updated on
line 21, the algorithm can never stop at line 18. Modifying α
means the algorithm has found a strategy x for Max that guar-
antees the reward of α against any strategy of the opponent.
For any strategy y for Min that can occur in further iterations
of the main cycle, playing mixed strategy x gains at least α for
Max. It means that either all pure strategies from the support
of x gain payoff α, or there is at least one pure strategy that
gains even more than α in order to achieve α in expectation.
Either way, the BRMax algorithm does not return null. �

4.2 Performance Analysis
Two factors affect the performance of the proposed algorithm:
(1) ordering of the actions in each stage, and (2) the size of the
support of NE in stage games. The effect of action-ordering is
similar as in classical Alpha-Beta search – if the best actions
are considered first, the remaining actions are more-likely to
be pruned. The size of the support (i.e., how many actions are
actually used in NE with non-zero probability) represents the
minimal number of actions to be added by the best-response
algorithms and estimates the number of LPs computed per
node. We denote m = maxs∈S ms; n = maxs∈S ns; and d the
depth of the game.

The optimal case for the algorithm is under the existence
of a pure subgame-perfect Nash equilibrium and the optimal
move ordering. In this case the serialized Alpha-Beta algo-
rithms in the root node return the same value for both serial-
izations, since if there is a pure Nash equilibrium in a matrix
game, each serialization of the game leads to the value of
the Nash equilibrium [Osborne and Rubinstein, 1994, p. 22].
Alpha-Beta pruning effectively reduces the branching factor



to its square root in the best case [Russell and Norvig, 2009, p.
169]; hence, the search evaluates O

(
(mn)

d
2

)
serialized nodes,

using a constant time for evaluating each of them.
In the worst case, the iterative algorithm in all stages of the

game constructs the whole game matrix adding one action at
a time. As a result, the computation in one node will require
evaluating (m + n) linear programs. Furthermore, the worst
case estimate is that the serialized alpha-beta search does not
prune anything and evaluates all (mn)d nodes of the serialized
trees. If we assume that the results of both Algorithm 1 and 2
are cached and never re-computed with the exact same inputs,
and LPmn denotes the computational complexity of solving an
m×n matrix game by linear programming, the worst case time
complexity of the whole algorithm is

O
(
(m + n)LPmn(mn)d−1 + 2(mn)d

)
⊆ O

(
(m + n)LPmn(mn)d−1

)
The worst as well as the best case complexity of the full
search algorithm is O

(
LPmn(mn)d−1

)
.

5 Experiments
We experimentally evaluate the proposed algorithm on two
specific games and a set of randomly generated games. As a
baseline algorithm we use the full search based on the back-
ward induction that solves the full linear program (LP) in each
stage of the game (denoted FullLP). The same baseline algo-
rithm and one of the games was also used in the most related
previous work [Saffidine et al., 2012], which allows the direct
comparison of the results, since their pruning algorithm intro-
duced only minor improvement. We use two variants of our
algorithm to measure the improvement introduced by each of
the two components. Besides the variant of the algorithm de-
scribed in Section 3, denoted DOαβ, we also run a variant
without the serialized Alpha-Beta search (denoted as DO).

None of the algorithms uses any domain-specific knowl-
edge or heuristics and a different random move ordering is
selected in each run of the experiments. All the compared al-
gorithms were implemented in Java, using a single thread on
a 2.8 GHz CPU and CPLEX v12.4 for solving LPs.

5.1 Experiment Domains
Goofspiel
In the Goofspiel card game (also used in [Saffidine et al.,
2012]), there are 3 identical decks of cards with values
{1, . . . , d} (one for nature and one for each player). The game
is played in rounds: at the beginning of each round, nature re-
veals one card from its deck and both players bid for the card
by simultaneously selecting (and removing) a card from their
hands. A player that selects a higher card wins the round and
receives a number of points equal to the value of the nature’s
card. In case both players select the card with the same value,
the nature’s card is discarded. When there are no more cards
to be played, the winner of the game is chosen based on the
sum of card values he received during the whole game. We
follow the assumption made in [Saffidine et al., 2012] that
both players know the sequence of the nature’s cards. In the
experiments we varied the size of the decks of cards, and in
each experimental run we used a randomly selected sequence
of the nature’s cards.

Pursuit-evasion Game
The pursuit-evasion game is played on a graph for a pre-
defined number of moves (d) by an evader and a pursuer that
controls 2 pursuing units. The evader wins, if she successfully
avoids the units of the pursuer for the whole game; pursuer
wins, if her units successfully capture the evader. The evader
is captured if either her position is the same as the position of
a pursuing unit, or the evader used the same edge as a pursu-
ing unit (in the opposite direction). We used a grid-graph for
the experiments (5×5 nodes) and we altered the starting posi-
tions of the players (the distance between the pursuers and the
evader was always at most

⌊
2
3 d

⌋
moves, in order to provide a

possibility for the pursuers to capture the evader).

Random Games
In randomly generated games, we fixed the number of actions
that players can play in each stage to 4 (the results were simi-
lar for different branching factors) and we varied depth of the
game tree. We use 4 different methods for randomly assign-
ing the utility values to the terminal states of the game: (1) the
utility values are uniformly selected from the interval [0, 1];
(2) the utility values are binary, uniformly selected from the
set {0, 1}; (3) we randomly assign either −1 or +1 value to
each edge (i.e., joint move), and the utility value in a leaf is
a sum of all values on edges on the path from the root of the
game tree to the leaf; (4) as in the previous case, however, the
utility is equal to the signum of the sum of all values on the
edges, which corresponds to win/loose/tie games. The first
two methods are difficult for pruning, since there is no corre-
lation between actions and utility values in sibling leafs. The
two latter methods are based on random T-games [Smith and
Nau, 1995], that create more realistic games using the intu-
ition of good and bad moves.

5.2 Results
We primarily compare the overall running time for each of the
algorithms; secondly, we compare the number of fully eval-
uated nodes, i.e., the stage games on which Algorithm 1 is
called. The reported results are averages of several runs of
the algorithms – we used at least 50 runs for each of the vari-
ant of our algorithm and 10 runs of the FullLP algorithm (the
variance of the FullLP algorithm is much less dependent on
the specific structure and utility values in the game).

The results for both specific games are depicted in Fig-
ure 2 (note the logarithmic y-scale). In both cases the DOαβ
algorithm significantly outperforms the FullLP search. In
larger instances of Goofspiel, it fully evaluates less than 1%
of nodes in a fraction of time (less than 7%); FullLP solved
the largest instance of Goofspiel with 7 cards in over 2 hours
and evaluated ≈ 3 · 108 nodes, while DOαβ solved it in 9
minutes fully evaluating ≈ 2 · 106 nodes. Our results highly
contrast with the Goofspiel results of the pruning algorithm
presented in [Saffidine et al., 2012], where the number of
evaluated nodes was at best around 20%, and the running
time improvement was only marginal. Even the DO algo-
rithm without the serialized Alpha-Beta search performs bet-
ter compared to the FullLP – for the larger instances it fully
evaluates only around 30% nodes in 40% time of FullLP.
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Figure 2: Comparison of evaluated nodes and running time
for (2a) Goofspiel, and (2b) a pursuit-evasion game.

The improvement is even more apparent in the pursuit-
evasion game, where our algorithm can easily exploit the fact
that in many positions of the units a pure subgame-perfect
equilibrium exists and it is found by the serialized Alpha-
Beta searches. The largest instances of the pursuit-evasion
games with depth 7 have up to 1012 nodes, out of which the
DOαβ algorithm on average fully evaluates only ≈ 1 · 105,
and solves the game in 51 minutes, while a single run of the
FullLP algorithm has not finished in 10 hours.

As indicated by the worst case computational complexity
analysis in Section 4, there are games, on which the proposed
algorithm performs worse than FullLP. If we assign com-
pletely random values to the leafs of the game tree, every ac-
tion can lead to an arbitrary good or bad situation; hence, it is
very hard to prune some parts of the game tree. When the util-
ity values are real values from the interval [0, 1], both variants
of our algorithm were slower than FullLP; although on large
instances DOαβ fully evaluates less than 50% nodes, it takes
more than 140% time of the FullLP. The situation already
changes when we use binary utility values: the DOαβ fully
evaluates less than 27% nodes taking less than 83% time of
the FullLP; DO evaluates around 40% nodes and it is slightly
faster than FullLP.

In the more realistic class of random games with good and
bad moves, the proposed algorithm again achieves substan-
tial improvements. The results are depicted in Figure 3 with
‘sgn’ denoting the variant with utilities form the set {1, 0,−1}.
The trends are similar to the experiments on specific games.
As expected, less distinct utility values suits the pruning al-
gorithm better. We plot the results for the FullLP only once,
because of small differences for both types of utilities.

5.3 Further Improvements
Presented results show great computational savings com-
pared to the full search achieved without any domain-specific
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Figure 3: Comparison of evaluated nodes and running time
for random games with correlated utility values.

knowledge. However, adding the domain-specific knowledge
and heuristics known from classical Alpha-Beta search can
improve the performance even further. For example, with a
domain-dependent move-ordering heuristic, the modified al-
gorithm required only ≈ 60% of the original DOαβ time in
the pursuit-evasion game (the largest instances with depth 7
were on average solved in 30 minutes).

We have also performed initial experiments with more ad-
vanced pruning techniques. We modified the best-response
algorithm, such that in the computation of the exact value
for a stage si, j (line 11 in Algorithm 2), the algorithm calls
the double-oracle method with the tighter bounds (p′i, j, oi, j).
If the double-oracle returns minval, the algorithm can update
the upper bound oi, j ← p′i, j and immediately move to the next
action i. On the domain of pursuit-evasion game, this mod-
ification slightly improved the performance of the DOαβ al-
gorithm, but the need for repeated evaluations of the same
subtree with different bounds did not pay off in other do-
mains. On the other hand, supporting this kind of pruning
in the algorithm allows generalization of techniques such as
null-window search for simultaneous-moves games.

6 Conclusions
In this paper we present a novel pruning algorithm for solving
two-player zero-sum extensive-form games with simultane-
ous moves. The algorithm is based on (1) the double-oracle
method applied on normal-form games that represent single
simultaneous move by both players, and (2) the fast calcula-
tion of bounds using the classical Alpha-Beta search run on
serialized variants of the original game. Our algorithm shows
significant improvement in terms of running time as well as
the number of fully evaluated nodes in the game tree without
any domain-specific knowledge or heuristics.

The work presented in this paper stimulates a variety of fu-
ture work. Primarily, the efficiency of the algorithm can be
further improved by incorporating existing game-tree search
heuristics (e.g., altering the bounds when recursively call-
ing the double-oracle method, using a null-window, or using
transposition-tables). Secondly, our algorithm can be easily
modified to an approximative version that could be sufficient
for many specific domains.
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