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Abstract— We solve the fully multimodal journey planning
problem, in which journey plans can employ any combination of
scheduled public transport (e.g., bus, tram and underground),
individual (e.g., walk, bike, shared bike and car), and on-
demand (e.g., taxi) transport modes. Our solution is based on
a generalised time-dependent graph that allows representing
the fully multimodal earliest arrival problem as a standard
graph search problem and consequently using general shortest
path algorithms to solve it. In addition, to allow users to
express their journey planning preferences and to speed up
the search process, flexible journey plan templates can be used
in our approach to restrict the transport modes and mode
combinations permitted in generated journey plans. We have
evaluated our solution on a real-world transport network of the
city of Helsinki and achieved practically usable search runtimes
in the range of hundreds of milliseconds.

I. INTRODUCTION

The growing number of transport options available in
modern cities raises the importance of tools that support
travellers in finding journey itineraries that make the best
use of available transport services while respecting traveller’s
individual needs. Existing journey planners fulfil such re-
quirements only to a limited degree, in particular as they
often only consider a certain subset of transport modes and
their combinations, and as they only provide limited ways
for users to express their preferences.

The journey planning problem is most often formalised
as the earliest arrival problem (EAP), i.e., the problem of
finding the earliest arrival at a destination given a departure
date and time from an origin. The earliest arrival problem has
been widely studied and numerous algorithms and speed-up
techniques exist for solving it on road network graphs and
networks of public transport (PT) services. However, very
limited work has been done on solving the earliest arrival
problem for journey plans allowing general combinations of
individual and public transport modes, the work of Horn [7]
and Yu and Lu [13] being notable exceptions.

In this paper, we aim to address this gap. More specifically,
we focus on solving the fully multimodal variant of the EAP.
We use the term fully multimodal in order to stress that we
consider modes and combinations thereof that go beyond
what is supported in existing multimodal journey planners.
In our approach, a journey can consist of any combination
of scheduled PT modes (e.g., bus, tram and underground),
individual modes (e.g., walk, bike, shared bike and car), and
on-demand (e.g., taxi) modes.
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We adopt a representation-centric approach to solving the
fully multimodal EAP. Thus, instead of providing complex,
purpose-specific journey planning algorithms, we introduce
a generalised time-dependent (GTD) graph that allows rep-
resenting the fully multimodal EAP as a standard graph
search problem and consequently use general shortest path
algorithms to solve it. We treat the problem in a deterministic
setting assuming no uncertainty in any of the attributes of
the planning graph.

Along with the GTD graph representation, we also in-
troduce the concept of journey plan templates. Journey
plan templates provide a powerful way of parameterising
the operation of the planner and allow the user or the
administrator of the journey planner to obtain plans that
best meet their constraints and preferences. In addition, the
templates constrain the search space and therefore speed up
journey planning.

II. RELATED WORK

As already indicated, the earliest arrival problem is a
widely studied problem when considered separately for plan-
ning on road networks and for planning on networks of
scheduled PT services. Existing work covers the whole spec-
trum from formal models of the problem, through solution
algorithms up to practical consumer-oriented planning tools
and services.

The road network variant of the EAP typically employs
the direct graph representation of the road network. The road
network is represented as a weighted directed graph G =
(V,E, ρ) where the set of nodes V represents junctions and
the set of edges E represents roads. Each edge (u, v) ∈ E
is assigned a weight ρ((u, v)) specifying the time needed
to travel across this edge. The road network graph is very
sparse, almost planar, and usually has hierarchical proper-
ties. These properties are used to enhance basic shortest-
path algorithms, such as A*, with speed-up techniques that
accelerate graph search. The best known speed-up techniques
include SHARC [2], Landmark A* (ALT) [6], highway hier-
archies [11], and transit-node routing [1].

For the scheduled PT variant of the EAP, there are two
main ways to represent public transport timetables as a search
graph. In the time-expanded approach [9], each event at
a stop, e.g., the departure of a train, is modelled as a node
in the graph; in the time-dependent approach [3], the graph
only contains one node for each stop. To accelerate the search
process, many speed-up techniques for basic shortest-path
algorithm, e.g., Dijkstra’s algorithm, have been proposed,
including the multi-level graph approach [12], access-node



routing [4], and core-ALT [8]. Many of these techniques have
been implemented as part of public online travel planning
services.

In contrast to the EAP for road networks and for networks
of scheduled PT services, only very limited research exists
on the fully multimodal variant of the EAP. One of few
exceptions is the planner proposed by Horn [7] which sup-
ports combinations of scheduled PT and on-demand transport
services. A limitation of the Horn’s approach is that the on-
demand mode can only appear as the first or the last non-
walk leg of a journey, i.e., the on-demand mode can only
serve as a feeder service. The second attempt at solving the
fully multimodal EAP is provided by Yu and Lu [13] who
use a genetic algorithm to construct the sequence of transport
modes in a journey plan. In their experiments, Yu and Lu
permit walk, bus, underground, and taxi modes. However,
the individual modes of transport (bike, shared bike and car)
are not used.

Despite the limited research on the fully multimodal EAP,
several online services exist capable of planning journeys
employing non-trivial combinations of transport modes. For
example, the AnachB1 planner supports the combination of
car and scheduled PT services. A major weakness is that
the parking place (P+R) is not chosen optimally by the
planner but needs to be selected manually by the user. The
OpenTripPlanner2 supports the combination of walking and
riding a shared bike borrowed and later returned to one of
the many city’s bike sharing stations. However, the technical
approaches behind these services have not been published
and no guarantees about their optimality are known.

III. GENERALISED TIME-DEPENDENT GRAPH

As mentioned in the introduction, our approach to solving
the fully multimodal EAP relies on the newly proposed
generalised time-dependent (GTD) graph, which allows rep-
resenting the combined road network (for individual and
on-demand modes) and PT network (for PT modes) in a
single structure. The GTD graph is a generalisation of the
time-dependent graph with constant transfer times defined by
Pyrga et al. [9] (the time needed to make a transfer between
two lines at a stop is defined as a constant for each stop).
The generalised time-dependent graph G is constructed from
the following three structures: (1) time-dependent graph GT

for the PT network; (2) network graph GN for the network
of pavements, cycleways, and roads; (3) graph connector D
of the time-dependent graph GT and the network graph GN .
The GTD graph’s structure is shown in Figure 1. Below, we
describe each part of the construction in detail.

A. Time-dependent Graph

To model the network of scheduled PT services (e.g.,
bus, tram, underground), we use a time-dependent graph
GT = (V T , ET , ρT ) with constant transfer times [9]. We
have chosen this model for its better performance than the
time-expanded model [10]. Let S be the set of stop nodes

1http://anachb.at/
2http://emtvalencia.es/geoportal/?lang=en_otp
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Fig. 1: The structure of a GTD graph

corresponding to the stops that are physically present in the
PT network. A stop node can be served by one or more
routes. A route is a set of PT vehicle trips that are known to
the public under the same route number identifier, e.g., the
tram line number 3. Assuming that n is the number of routes
using a stop u ∈ S, then n route nodes Ru = {ru1 , . . . , run},
one for each route, are associated with stop u. Route nodes
are virtual nodes without corresponding counterparts in the
real world and they are used to model constant transfer times.
Without route nodes, it would not be possible to model non-
zero transfer times between different routes at the same stop.
The set of all route nodes is denoted as R = ∪u∈SRu. The
set of nodes V T of the time-dependent graph GT is then
defined as V T = S ∪R.

The set of edges ET of the time-dependent graph GT is
defined as ET = A ∪ B ∪ C where A denotes the set of
edges between route and stop nodes, B denotes the set of
edges between stop and route nodes, and C denotes the set
of route edges between route nodes of the same route. Edges
(v, w) ∈ A ∪B are called transfer edges. Formally, the sets
are defined as follows:
A = ∪u∈S{(ru, u)|ru ∈ Ru}
B = ∪u∈S{(u, ru)|ru ∈ Ru}
C = ∪u,v∈S{(ru, rv)|ru ∈ Ru ∧ rv ∈ Rv} where ru

and rv are visited successively by the same route

The link-traversal function f ′(v,w) : N → N is associated
with each edge (v, w) ∈ C and defined as f ′(v,w)(t) := t′

where t is the departure time from v and t′ ≥ t is the earliest
possible arrival time at stop w. We assume that overtaking
of vehicles on edges of the same route is not permitted. This
means that the earliest arrival of a PT vehicle to a route node
rwj corresponds to the earliest departure from an adjacent
departure route node rvi .

Let the function gv return the constant transfer time at
stop v. For example in Figure 2, the transfer from a route
node rv0 to rv1 and vice versa takes time gv . Then the travel
duration ρT (v,w) : N→ N of traversing an edge (v, w) ∈ ET
from v at the departure time t is defined as

ρT (v,w)(t) :=


0 if (v, w) ∈ A
gv if (v, w) ∈ B
f ′(v,w)(t)− t if (v, w) ∈ C

B. Network Graph

To model the network for individual modes of transport
(e.g., walk, bike, shared bike and car) and on-demand modes



of transport (e.g., taxi), we use the network graph GN =
(V N , EN , ρN ) defined as a weighted directed graph, where
the set of nodes V N represents junctions and the set of edges
EN represents roads, pavements, and cycleways. The length
of each edge (v, w) ∈ EN is given by the weight function
ρN : EN → R+

0 .

C. Graph Connector

In order to plan multimodal journeys using combinations
of individual, on-demand, and PT modes of transport, the
time-dependent graph GT and the network graph GN need
to be interconnected. Let θ : S → P(VN ) be a mapping
that associates with each stop v ∈ S a set of nodes θ(v) ∈
P(VN ) from the network graph. For the underground stops
and large PT stations, the mapping assigns a stop a set of
corresponding entrances from the network graph GN . For
the other PT stops, the mapping assigns to a stop a nearest
pavement node from the network graph GN .

Then the graph connector D of graphs GT and GN is
defined as a set of interconnecting edges:

D = {(v, w)|(v ∈ S ∧ w ∈ θ(v)) ∨ (v ∈ θ(w) ∧ w ∈ S)}
A length in metres ρd((v, w)) = |v, w| is assigned to each
(v, w) ∈ D (the Euclidean distance between v and w is
used).

D. GTD Graph

Finally, we can use the described structures to construct
a unified network graph that supports multimodal journeys
that use any combination of PT, individual, and on-demand
modes of transport. Before defining the GTD graph, we
define the edge weight ρ, the permitted modes function µ,
and the permitted mode change predicate χ.

Firstly, let t be the departure time from node v ∈ V and
vel ∈ R+ the travel speed in metres per second. Then the
edge weight ρ(v,w) : N×R+ → N returns the travel duration
(in seconds) of traversing the edge (v, w) ∈ E at time t
using travel speed vel:

ρ(v,w)(t, vel) :=

 ρT ((u,w), t) if (v, w) ∈ ET
ρN ((v, w))/vel if (v, w) ∈ EN
ρd((v, w))/vel if (v, w) ∈ D

Secondly, assuming M = {m1, . . . ,ml} is the set of all l
supported modes of transport, the function µ : E → P(M)
returns the set of permitted modes of transport µ((v, w)) ∈
P(M) at an edge (v, w) ∈ E. In our approach, we currently
use the following modes of transport: walk (W), bike (I),
shared bike (S), car (C), taxi (X), bus (B), tram (T), and
underground (U). Especially in the network graph GN , there
are usually several modes of transport permitted to use
a given edge, e.g., car, taxi, and bike.

Thirdly, we need to capture the fact that certain changes
of mode of transport are possible only at some nodes. For
example, changing from walk to shared bike or vice versa is
only possible at bike sharing stations. Formally, the permitted
mode change predicate χv :M ×M is associated with each
node v ∈ V and χv(m1,m2) returns true if it is possible to
change the mode of transport from m1 to m2 at node v.
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Fig. 2: An example of the GTD graph. Edges are annotated
with the permitted modes of transport. Stop nodes v, w ∈ S
represent two tram stops that are connected by one tram
route connecting four route nodes (rv

′
i , r

v
1 , r

w
0 , r

w′
j ). Route

nodes Rv = {rv0 , rv1} and Rw = {rw0 } associated with the
respective stop nodes v and w are highlighted with grey
background. Edges from the time-dependent graph GT are
also annotated with their weight (edge traversal time).

As an example, let SN ⊂ V N be the set of bike sharing
stations and PN ⊂ V N be the set of park and ride (P+R)
parking places. For the modes of transport currently used,
the predicate χv(m1,m2) for each v ∈ V and m1,m2 ∈M
is defined as follows (t denotes true, f denotes false):

χv(m1,m2) :=



t if v ∈ V T (1)
t if v ∈ SN ∧ ((m1m2 = WS)

∨(m1m2 = SW)) (2)
t if v ∈ PN ∧ ((m1m2 = CW) (3)
t if m1 = m2 (4)
f otherwise (5)

The defined predicate captures the five following rules:
(1) change of mode of transport is not restricted for any
stop v ∈ V T ; (2) change from walk to shared bike or vice
versa is possible only at bike sharing stations v ∈ SN ;
(3) change from car to walk is possible only at P+R parking
places; (4) change from m1 to m2 = m1 is not a change
(it is always permitted to continue with the same mode of
transport); (5) change of modes is not permitted in all other
cases.

Finally, we define the generalised time-dependent graph
as a weighted directed graph G = (V,E, ρ, µ, χ) where V =
V T ∪ V N and E = ET ∪ EN ∪D. An example of a GTD
graph is shown in Figure 2.

IV. JOURNEY PLANNING PROBLEM

In this section, we first describe the notions of a journey
leg and a journey plan. Then, we define the fully multimodal
earliest arrival problem.



A. Journey Plan

Let the journey leg be a part of a journey plan that is
either covered by the traveller on foot or by a movement
by one and only one vehicle from one location to another.
Formally, the journey leg L = ((v1, w1), . . . , (vk, wk)) is
defined as a sequence of |L| = k edges (vj , wj) ∈ E.
Edges are a finer-grained decomposition of a journey leg
and represent the lowest-level, atomic parts of any journey
plan. Then the journey plan is a quadruple π = (P, σ, φ, ψ):

• P = (L1, . . . , Ln) is a sequence of |P | = n journey
legs Li.

• Function σ denotes the mode of transport σ(Li) ∈ M
that is used for journey leg Li.

• Function φ : E → N returns the departure time from v
for each edge (v, w) ∈ E.

• Function ψ : E → N returns the arrival time at w for
each edge (v, w) ∈ E.

Let L[j] be the j-th element of a sequence of elements L
and |L| be the number of elements in L. Let ξ(P ) be the
flattened plan constructed as the concatenation of all edges
in all journey legs Li ∈ P :

ξ(P ) = (L1[1], . . . , L1[|L1|], . . . , Ln[1], . . . , Ln[|Ln|])

B. Fully Multimodal Earliest Arrival Problem

The fully multimodal earliest arrival problem is a pair J =
(G, r), where:

• G = (V,E, ρ, µ, χ) is a GTD graph
• r = (o, d, t) is a journey request specifying an ori-

gin o ∈ V , a destination d ∈ V , and a time of departure
t ∈ N

A journey plan π = (P, σ, φ, ψ), where P = (L1, . . . , Ln), is
then a solution of the fully multimodal earliest arrival prob-
lem J = (G, r) if and only if all the following conditions
hold:

1) Journey plan starts at the origin:
o = v where (v, w) = L1[1]

2) Journey plan ends at the destination:
d = w where (v, w) = Ln[|Ln|]

3) All edges are present in the GTD graph:
∀(v, w) ∈ ξ(P ) : (v, w) ∈ E

4) Edges form a path in the GTD graph:
∀j ∈ {1, . . . , |ξ(P )| − 1} :
(v, w) = ξ(P )[j] ∧ (w, x) = ξ(P )[j + 1]

V. JOURNEY PLANNING PROBLEM WITH TEMPLATES

For the fully multimodal earliest arrival problem with tem-
plates, we introduce the notion of a journey plan template.
As mentioned in the introduction, journey plan templates
give users and journey planner administrators a powerful
way of parameterising the journey planner to obtain plans
that best meet their constraints and preferences. For instance,
a journey plan template that prefers environmentally friendly
modes of transport can be designed by a journey planner
administrator (e.g., a combination of walk and shared bike).

A. Journey Plan Template

A journey plan template constrain the journey plan in the
permitted combination of modes on the level of journey legs.
A journey plan template τ is defined as a regular expression
over the transport modes alphabet M . As an example, we
list three templates3:
• Taxi only: ˆX$
• Walk and PT: ˆW((B|T|U)W)*$
• Walk and shared bike: ˆW(SW)?$
We define several notions related to the journey plan tem-

plates. Let the word σ(L1) . . . σ(Ln) be the mode sequence
κ(P ) of a sequence of journey legs P = (L1, . . . , Ln).
Empty mode sequence κ(∅) = ε. We say that a sequence of
journey legs P match a journey plan template τ if and only
if the mode sequence κ(P ) matches the regular expression τ .
Next, let modes(τ) be the set of modes of transport that are
present in a template τ . Finally, the binary operator ‖ over
a mode sequence m1 . . .mn and a mode of transport m ∈M
is defined as follows:

m1 . . .mn‖m :=

{
m1 . . .mn if m = mn

m1 . . .mnm otherwise

B. Fully Multimodal EAP with Templates

The fully multimodal EAP with templates adds the notion
of journey plan template to the fully multimodal EAP. Thus,
the fully multimodal earliest arrival problem with templates
is a triple J = (G, r, τ), where:
• G = (V,E, ρ, µ, χ) is a GTD graph
• r = (o, d, t) is a journey request
• τ is a journey plan template

A journey plan π = (P, σ, φ, ψ) is then a solution of the
fully multimodal earliest arrival problem with templates J =
(G, r, τ) if and only if all the following conditions hold:

1) Journey plan π is a solution of the fully multimodal
earliest arrival problem J = (G, r).

2) Journey legs P = (L1, . . . , Ln) match the journey plan
template, i.e., σ(L1) . . . σ(Ln) matches τ .

VI. SOLUTION METHOD

In this section, we present a method to solve the fully
multimodal earliest arrival problem with templates using the
GTD graph representation. The method uses a contextual
view over the underlying GTD graph in order to use general
shortest path algorithms to find the journey plans in the
search space. This is enabled by storing the node context,
i.e., the time of arrival and the modes of transport sequence
used, in the contextual GTD graph.

A. Contextual GTD Graph

The contextual GTD graph is a view over an underlying
GTD graph. The contextual GTD graph serves two main
purposes. First, it allows filtering the available edges in the
GTD graph with respect to the permitted modes of transport
specified by a given journey plan template τ . Second, it

3POSIX Extended Regular Expression syntax is used.



Function 1 Outgoing edges of a contextual node

Input: A contextual node (v, ta,ms) and a template τ
Output: A set of outgoing edges from (v, ta,ms) given τ

1: function OUT((v, ta,ms),τ )
2: O := ∅
3: for all (v, w) ∈ E do
4: for all m ∈ µ((v, w)) do
5: m′s := ms‖m
6: mprev := mn where ms = m1 . . .mn

7: a := χv(mprev,m)
8: b := m′s matches τ
9: if m ∈ modes(τ) ∧ a ∧ b then

10: t′ := ta + ρ(v,w)(ta, λ(m))
11: O := O ∪ ((v, ta,ms), (w, t

′,m′s))
12: end if
13: end for
14: end for
15: return O
16: end function

allows checking that the current partial journey plan matches
a given journey plan template τ during the search process.

Let us define the graph formally. The contextual GTD
graph Gτ over a GTD graph G = (V,E, ρ, µ, χ) us-
ing a journey plan template τ is defined as Gτ =
(Vτ , Eτ , ρ, µ, χ, λ). Vτ is a set of contextual nodes defined
as triples (v, ta,ms) where:
• v ∈ E is a node in the GTD graph
• ta ∈ N is the arrival time at v
• ms is a mode sequence κ(P ′) of a sequence of journey

legs P ′ from origin o (taken from the input journey
request r) to node v

The context of contextual nodes corresponds to a GTD
graph traversal at certain time using specific modes of
transport, cf. Figure 3.

d{W,I,S}a b c{W,I,S} {W,I,S}

GTD graph G

contextual GTD graph Gτ

(a, 8:00, ε) (b, 8:10,W)

(c, 8:30,WS)

(d, 8:35,WSW)

{W}

e

(e, 8:20,W)

Fig. 3: An example of a GTD graph and its corresponding
contextual GTD graph searched using the walk and shared
bike template. Origin is set to a at 8:00; destination is set
to d. Grey nodes b and c represent bike sharing stations.
The bottom part of the figure shows how the contextual
information is represented using the contextual nodes in the
contextual GTD graph Gτ .

Let the function λ : M → R+ returns the travel speed
λ(m) for a mode of transport m ∈ M . Then the set of

Function 2 Path to journey plan transformation

Input: A path K in Gτ
Output: A journey plan π = (P, σ, φ, ψ)

1: function DERIVEJOURNEYPLAN(K)
2: i := 0
3: for all ((v, ta,ms), (v

′, t′a,m
′
s)) ∈ K do

4: if ms 6= m′s then
5: i := i+ 1
6: Li := ()
7: σ(Li) := mj where m′s = m1 . . .mj

8: end if
9: Li := Li ◦ (v, v′)

10: φ((v, v′)) := ta
11: ψ((v, v′)) := t′a
12: end for
13: P := (L1, . . . , Li)
14: return (P, σ, φ, ψ)
15: end function

contextual nodes Vτ and the set of edges Eτ is constructed
using the origin contextual node (o, t, ε) and the function
OUT((v, ta,ms), τ) (cf. Function 1) that returns the outgoing
edges for a contextual node (v, ta,ms) and a template τ . At
line 9 of Function 1, it is checked that a mode of transport
m is present in the template τ , that a mode change from
mprev to m is permitted and that the current mode sequence
m′s matches the journey plan template τ .

The advantage of the contextual GTD graph is that unmod-
ified general shortest path algorithms (e.g., A* or Dijkstra)
can be used to find journey plans. This is enabled by
embedding the domain information (e.g., permitted modes
of transport and checking against a journey plan template)
in the contextual GTD graph.

From the implementation point of view, the contextual
GTD graph can be constructed on request. The nodes and
edges are created on request only when they are needed
during the search process of the respective shortest path
algorithm.

B. Algorithm Specification

Now we present how the contextual GTD graph is used
to solve the fully multimodal EAP with templates J =
(G, r, τ). The input of the algorithm is an instance of the
problem J = (G, r, τ) and the output is a journey plan
π = (P, σ, φ, ψ) that solves the problem J = (G, r, τ). The
algorithm works in two phases:

1) Shortest path algorithm on contextual GTD graph
2) Journey plan derivation
In the first phase, a general shortest path algorithm

(e.g., A* or Dijkstra) is used to find a path K =
((x1, x2), (x2, x3), . . . , (xk, xk+1)) of length |K| = k in
the contextual GTD graph Gτ = (Vτ , Eτ , ρ, µ, λ) from the
origin contextual node (o, t, ε) to the destination contextual
node (d, ·, ·). The edge weight function ρ(v,w) at line 10
of Function 1 returns the duration of traversing an edge



TABLE I: Size of the Helsinki GTD graph

Graph name Graph Nodes Edges
Time-dependent graph GT 50,320 112,127
Network graph GN 207,240 585,937
Graph connector D - 14,980
GTD graph G 257,560 713,044

(v, w) ∈ E, therefore the journey plan is optimised with
respect to its duration (i.e., the earliest arrival problem is
solved).

In the second phase, the path K found in the con-
textual GTD graph Gτ is transformed into a jour-
ney plan π = (P, σ, φ, ψ). This is done using the
DERIVEJOURNEYPLAN(K) function, cf. Function 2. The
function iterates over edges ((v, ta,ms), (v

′, t′a,m
′
s)) ∈ K.

Every time the mode sequence is changed, a new journey leg
Li is created and its mode σ(Li) set. The edge (v, v′) ∈ E is
then added to the current journey leg Li using the operator ◦
that appends an element to a sequence and the departure
φ(v, v′) and arrival ψ(v, v′) is set.

It is important to note that if the shortest path algorithm
used in the first phase of the algorithm is optimal, then
the solution of the fully multimodal EAP with templates is
optimal with respect to journey plan duration and the journey
plan template τ .

VII. EVALUATION

Our proposed approach has been evaluated on real-world
PT and road network data for Helsinki. The main purpose of
the evaluation was to confirm that the GTD graph represen-
tation is flexible enough to allow successfully planning fully
multimodal journeys with a variety of mode combinations.
We were also interested in measuring how fast the GTD
graph can be searched using standard algorithms – the
runtimes results should, however, be treated as preliminary
because we have not yet applied any speed-up techniques or
other optimisation methods.

A. Data

Helsinki covers the area of 600 square kilometres.
Kalkati.net XML database dump4 provided by the Helsinki
Regional Transport Authority (HSL) has been used as the
data source for scheduled PT services. The data has been
converted to the widely used General Transit Feed Specifica-
tion (GTFS)5 data format which is then used to construct the
time-dependent graph GT . OpenStreetMap6 has been used
as a data source for the network graph GN . Basic statistics
about the size of the GTD graph and its components are
given in Table I. A fragment of the GTD graph is visualised
in Figure 4. Note that in Helsinki, there are currently no
bike sharing stations. For experimentation purposes, 150 bike
sharing stations have therefore been added – the locations
of the stations were chosen randomly with the uniform

4http://developer.reittiopas.fi/pages/en/kalkati.
net-xml-database-dump.php

5https://developers.google.com/transit/gtfs/
6http://openstreetmap.org/

walk only bike and walk PT roads

Fig. 4: Visualisation of a 2.4 km by 2.4 km fragment of
the Helsinki GTD graph. Edge colours denote the modes
of transport permitted at each edge, cf. legend. All other
combinations of modes (e.g., car and taxi, bike only) are
marked red. There are approximately 9,500 nodes and 27,700
edges in the visualisation.

distribution over the nodes V N of the network graph GN .
In addition, P+R parking places are not properly set in the
OpenStreetMap data. For experimentation purposes, 10 P+R
parking places were manually inserted into the map at the
border of the Helsinki city centre.

B. Experiment Settings

We used seven journey plan templates τ ∈ T7 for the
evaluation, cf. Table II. The templates have been chosen to
reflect the typical combinations of modes used in modern
multimodal transport systems. To allow a unified description
of the results, we treat the fully multimodal EAP (without
templates) as equivalent to the fully multimodal EAP with
templates using the empty template permitting any combina-
tion of modes.

A* and Dijkstra’s algorithms have been used to find
a journey plan π given J = (G, r, τ). A* uses a duration
heuristic h(v) calculated as h(v) = |v, d|/velmax where
|v, d| is the Euclidean distance between current node v and
destination node d, velmax is the speed of the underground
set to 120 km/h.

Following initial experiments, the better algorithm of the
two has been chosen for each template τ ∈ T7. The templates
τ ∈ T7 and their corresponding chosen algorithms are listed
in Table II. Consequently, all templates use A* except the
walk and PT template and car, walk and PT template where
the Euclidean distance heuristic slows-down the A* search
process [6] so the Dijkstra’s algorithm is used.



TABLE II: Journey plan templates used in the evaluation,
along with the best performing algorithm for each template

Template name Template regexp Algorithm
Walk only ˆW$ A*
Bike only ˆI$ A*
Taxi only ˆX$ A*
Walk and PT ˆW((B|T|U)W)*$ Dijkstra
Car, walk and PT ˆCW((B|T|U)W)*$ Dijkstra
Walk and shared bike ˆW(SW)?$ A*
Empty template N/A A*

TABLE III: Average runtimes in milliseconds

Template name Short Medium Long
Walk only 24 135 417
Bike only 15 60 178
Taxi only 31 103 239
Walk and PT 488 817 939
Car, walk and PT 384 477 504
Walk and shared bike 87 223 440
Empty template 376 758 891

The set of instances of the fully multimodal EAP with
templates Q for the experiment were created in the following
way. First, n = 10,000 origin-destination-departure triples
Qt = ((o1, d1, t1), . . . , (on, dn, tn)) were sampled using the
uniform distribution over the coordinates of Helsinki area
and the uniform distribution over the time interval from 8:00
to 18:00 on 17 Jan 2013. The maximum origin-destination
distance was set to 40 km to exclude long trips that are not
usual in the urban setting.

Then the origin and destination coordinates were converted
to origin and destination nodes from graph G. Let δ(c,m)
be a function that returns the nearest node in the GTD
graph G given a coordinate c and a mode of transport m. For
example, for the walk mode, the nearest node on a pavement
is returned. Then the set of |Q| = 70,000 instances of the
fully multimodal EAP with templates is constructed. Each of
the origin-destination-departure triples Qt is combined with
all journey templates as follows:

Q = {(G, (δ(o,m1), δ(d,mn), t), τ)|
(o, d, t) ∈ Qt ∧ τ = m1 . . .mn ∈ T7}

C. Implementation

The algorithm is implemented in JAVA 7. The results
obtained are based on running the algorithm on one core of
a 3.2 GHz Intel Core i7 processor of a Linux desktop com-
puter with OpenJDK IcedTea7 2.3.7. The PostgreSQL 9.1
database spatially enabled with PostGIS 2.0.17 was used
for storing and retrieving the data for the time-dependent
graph GT and the network graph GN . The Osmosis 0.418

tool has been used to cut the Helsinki area from the OSM
data dump and to put the data in the PostgreSQL database.
Both the A* and Dijkstra’s algorithm use the Fibonacci heap
[5] implementation from the JGraphT 0.8.39 library.

7http://postgis.net/
8http://wiki.openstreetmap.org/wiki/Osmosis
9http://jgrapht.org/
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Fig. 5: Runtime against origin-destination distance (taxi only
template, 1000 randomly selected requests)
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Fig. 6: Runtime against origin-destination distance (walk and
PT template, 1000 randomly selected requests)

Geographical locations of all nodes in the OSM data and
stops in the GTFS data are represented as their longitude and
latitude values using the World Geodetic System (version
WGS 84). WGS 84 is a geographic coordinate system type
identified by SRID 432610 (Spatial Reference System Identi-
fier). In order to simplify the complex calculation of the Eu-
clidean distance between two nodes expressed in the WGS 84
coordinates (the calculation is very frequently used in the A*
Euclidean distance heuristic), we use a projected coordinate
system. The projected coordinate system is regional and
projects the location from a spheroid to a plane. For locations
in Helsinki, the spatial reference system “KKJ / Finland
zone 2” with SRID 239211 is used.

D. Results

A solution for each problem instance J ∈ Q has been
computed. All instances are divided into three sets based
on the distance of their origin and destination location:
short (below 10 km), medium (10–20 km), and long (20–40
km). Average runtimes in milliseconds for each journey plan
template and origin-destination distance interval are shown
in Table III.

10http://spatialreference.org/ref/epsg/4326/
11http://spatialreference.org/ref/epsg/2392/



Runtimes for all journey plan templates (except templates
containing PT) are better than the runtimes for the empty
template. This empirically confirms that the journey plan
templates constrain the search space of the planner, which
results in lower runtimes than when the empty template,
which permits any combination of modes, is used. Runtimes
for the empty template are better than the runtimes for
templates containing PT because the heuristic of the A*
algorithm leads the planner well into the destination using
the taxi mode (for the majority of requests, taxi is the fastest
mode of transport with the lowest journey plan duration).

In general, the templates containing more than one mode
of transport are more difficult for the planner (higher branch-
ing factor and a larger contextual GTD graph) resulting in
higher runtimes than the single-mode templates. Template
with the lowest runtimes is the bike only template where the
average runtimes range from 15 ms for the short requests up
to 178 ms for the long requests. Template with the highest
average runtimes is the walk and PT template where the
average runtimes ranges from 488 ms for the short requests
up to 939 ms for the long requests. The runtimes of car, walk
and PT template are lower than the runtimes of the walk
and PT template because a significant part of the journey is
covered by car and only the last part from the P+R parking
place to the destination by walk and PT modes.

Figures 5 and 6 show scatter plots of the search runtime
versus the origin-destination distance for 1000 randomly
selected requests. It can be observed that runtimes for the
taxi only template in Figure 5 are more strongly correlated
on the origin-destination distance than the runtimes of the
walk and PT template in Figure 6.

E. Discussion

Compared to the algorithms employing state-of-the-art
speed-up techniques specifically designed for road network
and public transport network variant of EAP, the search times
of our method are high. There are several reasons for such
a behaviour. First and most importantly, the GTD graph
representation is significantly more expressive and flexible,
enabling searching for plans from a much richer family
of journey plans, which necessarily increases the method’s
computational cost. Second, no speed-up techniques have
yet been applied to accelerate the search of the contextual
GTD graph. Last, the algorithm is currently implemented
in JAVA whereas the search algorithms employing state-of-
the-art speed-up techniques are usually implemented in C++.
That said, even without the use of speed-up techniques and
other optimisations, our method achieves practically usable
runtimes.

So far, seven journey plan templates have been used in
the evaluation. In the future, we plan to add the following
useful plan templates:
• Taxi and PT: ˆX?W((B|T|U)W)*X?$

A taxi can be used for covering the first, the last, or
both first and last journey legs.

• Bike and PT: ˆIW(UW(IW)?)*I?$
A traveller uses his or her own bike to get from an

origin to a destination. Where possible and beneficial,
PT mode of transport that permits taking bike along is
used (in this example only the underground permits it).

VIII. CONCLUSION

We have presented a novel method for multimodal journey
planning that allows finding multi-leg journeys utilising
transport modes and combinations thereof not supported
by existing journey planners. At the core of our method
is a novel, generalised time-dependent graph representation
which allows representing the fully multimodal journey
planning problem with templates as a graph search problem
that can be solved by general graph search algorithms.
Experiments on realistic network data about the Helsinki
transport system confirmed the viability of the approach –
the planner was able to find a diverse set of journey plans
and achieve runtimes which, although noticeably higher
compared to algorithms optimised for basic variants of the
earliest arrival problem, are generally usable and are likely
to be significantly improved after the preliminary implemen-
tation of the approach is optimised.
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