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Abstract . AgentSpeak(L), together with its implementation Jason, is one of the
most influential agent-oriented programming languages. Besides having a strong
conceptual influence on the niche of BDI-inspired agent programming systems,
Jason also serves as one of the primary tools for education of and experimenta-
tion with agent-oriented programming. Despite its popularity in the community,
relatively little is reported on its practical applications and pragmatic experiences
with adoption of the language for non-trivial applications.

In this paper, we present our experiences gathered during an experiment aimed
at development of a non-trivial case-study agent application by a novice Jason
programmer. In our experiment, we tried to use the programming language as is,
with as few customisations of the Jason interpreter as possible. Besides providing
a structured feedback on the most problematic issues faced while learning to pro-
gram in Jason, we informally propose a set of ideas for solving the encountered
design problems and programming language issues.

1 Introduction

Jason [8] is an agent-oriented programming system implementing the agent program-
ming language AgentSpeak(L) [19]. AgentSpeak(L) was proposed as a theoretical lan-
guage, an articulation and operationalization of the Bratman’s Belief-Desire-Intention
architecture [9]. Jason is nowadays one of the popular approaches in the group of
theoretically-rooted agent-oriented programming languages (APLs). Some other mem-
bers of this group include also 2APL, 3APL, GOAL, Golog, Jazzyk, etc. (for an overview
consult e.g., [5,6,7,16]). Building on the foundations of formal logics, these languages
serve as vehicles for study of both theoretical issues in agent systems (language fea-
tures, generic programming constructs, reasoning, coordination, etc.), as well as prac-
tical aspects of their design and implementation (e.g., modularity, design, debugging,
or code maintenance). To enable program verification, or model checking for more rig-
orous reasoning about agent programs, Jason, together with the majority of APLs in
this class, puts a strong emphasis on their rooting in computational logic and rigor-
ous formal semantics. Unlike the more pragmatic approaches, such as Jadex, or JACK
(cf. [18,20]), these APLs were designed from scratch. While providing the advantages
we have discussed, this has also created serious shortcomings with respect to the prac-
ticality of their use, such as those discussed in this paper.
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On one hand, pragmatic problems of agent design and implementation, such as code
modularity, are gaining a more prominent role in the research community. On the other
hand, a feedback on practical use of such APLs in more elaborated settings is rather
scarce. AgentSpeak(L) often serves as a basic APL for various extensions and integra-
tion with 3rd party tools. However, little is reported on its practical applications and
experiences with its use, be it in more involved applied research projects, or in more
significant close-to-real-world applications (cf. also the Jason related projects web-
site [14]). To date, the only report on pragmatic issues of Jason in a more involved
context is the study by Madden and Logan [15] in which the authors deal with prob-
lems of modularity in their application and in turn propose corresponding improve-
ments of the language itself. At the same time, to our knowledge, the most elaborated
applications of the Jason programming system include the entries to the Multi-Agent
Programming Contest, which already witnessed eight submissions in years 2006-2010
altogether by three independent research groups [1,2]. The reports on development of
these applications do not include a discussion of practical issues of an agent program
implementation, but rather focus on the analysis and design aspects with an emphasis
on the multi-agent coordination.

In this paper we discuss our experiences gathered during an experiment aimed at
developing a non-trivial case-study multi-agent application by a novice Jason program-
mer. The main goal of the undertaking was an exploration of basic problems in multi-
agent coordination in a simple simulated environment using the Jason programming
system. In particular, we have implemented an application involving a team of eight
agents collaboratively exploring a grid maze and subsequently traversing the environ-
ment while cooperatively maintaining a formation. Our experiment aimed at a naı̈ve,
and relatively conservative use of the Jason programming system. We tried to use the
programming language as is, with as few customisations of the Jason interpreter as
possible. In contrast, most involved example applications published at the Jason project
website [14] and submissions to the AgentContest employ extensive customisations of
the Jason interpreter as an inherent part of the system implementation.

The contribution of the presented paper is twofold. Firstly, we provide a structured
feedback on the most problematic issues faced while learning to program in Jason.
Secondly, without an ambition to provide conclusive technical solutions, we rather in-
formally propose a set of ideas aimed at solving the discussed design problems and
programming language issues.

After a brief introduction of AgentSpeak(L) and Jason in Section 2 the subsequent
Section 3 provides a description of the implemented case-study. In Section 4, the core of
this paper, we discuss a selection of problems we have faced during the experiment. For
each discussed issue, we firstly motivate and explain the problem on the background
of the introduced case-study application, or its extension, and then we discuss possible
solutions. The topics covered in the discussion include implementation of a simple loop
design pattern, handling interactions between several plans and interruptibility thereof,
and usage of mental notes as local variables in plans. We also discuss two technical
issues arising from implementation of agents embodied in dynamic environments and
the unclear boundary between Jason programming language itself and its underlying
customisation API in Java. We conclude the paper by final remarks in Section 5.
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2 AgentSpeak(L) and Jason

AgentSpeak(L) is a theoretical agent-oriented programming language introduced by Rao
in [19]. It can be seen as a flavour of logic programming implementing the core concepts
of the BDI agent architecture, a currently dominant approach to design of intelligent
agents. Structurally, an AgentSpeak(L) agent is composed of a belief base and a plan
library. The belief base, essentially a set of belief literals, provides the initial beliefs of
the agent. The plan library serves as a basis for action selection, as well as for steering
the evolution of the agent’s mental state over time. The plans of the agent are rules of
the form:

event : context ← plan

The rule denotes a plan, a sequence of basic actions and/or subgoals, which is applic-
able in reaction to the triggering event if the context condition, a conjunction of belief
literals, is satisfied.

AgentSpeak(L) agents are reactive planning systems which react to events occurring
in their environment, or are generated as subgoals internally by the agent as a result
of a deliberative change in its own goals. The dynamics of the agent system is facil-
itated by i) instantiation of abstract plans as intentions relevant in particular contexts,
and subsequently ii) gradual execution of the intentions leading to their subsequent de-
composition into more and more concrete subgoal invocations and finally atomic action
executions. In each deliberation cycle, such an agent performs the following sequence
of steps:

1. perceive the environment and update the belief base accordingly,
2. select an event to handle,
3. retrieve all relevant plans,
4. select an applicable plan and update the intentions accordingly,
5. select an intention for further execution,
6. execute one step of an intention and modify the intention base and the set of events

accordingly.

Jason is a Java-based programming system implementing AgentSpeak(L) with various
extensions. It also includes an integration with several multi-agent middleware plat-
forms such as JADE, or Moise+. In its original incarnation, AgentSpeak(L) is under-
specified in several points of the deliberation cycle. In particular, in how exactly its
three selection functions SE , SP and SI , denoting the selection of events, applicable
plans and intentions respectively, are implemented. In Jason, these are customizable
functions that can be implemented as Java methods. Furthermore, AgentSpeak(L) dis-
regards the implementation details of agent’s interaction with its environment. That is,
the interpreter assumes that the belief base is updated according to agent’s percepts at
the beginning of each deliberation cycle. Jason extends the framework for reasoning
about agent’s beliefs in that it incorporates a Prolog interpreter in the belief base and
also provides a toolbox for implementation of custom belief bases, such as the topology
of environments, or interface to relational databases. Finally, Jason provides a frame-
work for an implementation of perception handlers and external events as Java methods,
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together with an API for implementation of customised exogenous actions embodying
the behaviours of the agent.

The customisation interfaces of the Jason interpreter provide means to tailor the de-
liberation cycle to the domain specific requirements, as well as to improve the efficiency
of the agent program execution. Our motivation in the presented experiment was to ex-
plore the issues faced in the course of agent program implementation using the vanilla
Jason interpreter. The main requirement underlying the experiment was to make only
minimal customisations of the interpreter required to make the implemented agents in-
teract with their environment.

3 The Case-Study

The Cows & Cowboys problem of the Multi-Agent Programming Contest editions 2009
and 2010 (cf. [4], scenarios for the 2009-10 editions) is a challenging scenario for
cooperative multi-agent teams benchmarking. In the Cows & Cowboys scenario, two
teams of agents, herders, compete for a shared resource, cows. The environment is
a grid, usually a square with a side approximately 100 cells. Each cell can be either
empty, or can contain an object which can be either a tree, a fence, an agent, or a cow.
Trees serve as obstacles in the environment and are arranged so that the freely travers-
able space forms a kind of a maze. The agents can move between empty cells and can
open fences, by standing at the edge of a fence. Similarly to the agents, cows also roam
around through empty cells, however their movement is controlled by the environment.
It takes into account their mutual distances, as well as distances from the agents and
trees the cow can see. The agents and cows have a limited view, and in each simulation
step receive a perception containing cells in their vicinity. The task of each agent team
is to herd as many cows as possible into a corral belonging to the team. Because cows
are afraid of the agents, they can be pushed by a coordinated movement of a team of
agents.

For purposes of this case-study, we have considered a fragment of the Cows & Cow-
boys scenario. The concrete problem was to implement a team of agents, which co-
operatively explore the maze, find some pre-determined landmarks and then traverse
the maze from one landmark to another while maintaining a formation of a particular
shape.

The simulated environment was provided by the MASSim server [3]. The architec-
ture of the implemented system is depicted in Figure 1.

During every simulation step the belief base is updated with new perceptions and an
action from the previous timestep is marked as executed, if there was any. Jason thread
is then allowed to continue its deliberation based on the new percepts. Subsequently, the
agent’s control thread goes to sleep for 2000 milliseconds (the server sends new percepts
every 2500 milliseconds) unless it is woken up by the Jason thread upon an invocation
of an exogenous action from within an intention of the agent. Finally, the indicated
action to perform is validated by checking whether it is intended for the current timestep
and if found valid, it is sent back to the server. The only exogenous actions the agent
can execute are moves in the eight directions: north, east, south, west and the diagonal
moves north-east, north-west, south-east and south-west.
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Fig. 1. The architecture of a single Jason agent interacting with the simulated environment

The toolbox of internal actions includes, most importantly, the implementation of the
path planning algorithm A*, together with a few auxiliary functions such as a lottery-
like mechanism for choosing the formation leader, queries for contents of map cells,
etc.

One of the most important decisions for the implementation of the case-study was
that we did not customise the Jason interpreter itself, nor the event, plan, and intention
selection functions SE , SP , SI .

4 Issues Faced

In the following, we discuss a set of problems we encountered in the course of imple-
menting the case-study described above in Section 3. The programmer involved in the
experiment was new to BDI-style agent-oriented programming and was learning the
Jason language along the way. We used the book Programming Multi-Agent Systems in
AgentSpeak Using Jason [8] as the authoritative source and documentation for Jason.
For clarity, the discussion of each issue includes a brief motivation and explanation
of the particular design problem, subsequently followed by a discussion of the avail-
able solutions, their consequences and wherever appropriate an informal proposal for
an improved solution to the issue.

4.1 Loop Implementation

Quite often a programmer needs to implement some kind of a loop design pattern. In a
maze-like environment, the agent calculates a path from point A to point B using a path
planning algorithm and then it follows the path. This pattern could be implemented by
the following algorithm in an imperative language:

before−loop−code
while not loop−condition do

loop−body
end
after−loop−code
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As of conducting the here reported experiment, Jason did not feature a loop pro-
gramming construct per se, but it could be implemented by the following Jason code:

event: context←
!before−loop−plan;
!loop;
!after−loop−plan.

+!loop: not loop−condition←
!loop−body;
!loop.

This pattern implements the idea of tail recursion. The interpreter does not feature a
special treatment of tail recursion though. According to the language semantics, this
pattern unfolds into a growing intention stack. At the bottom of the stack there is the
after−loop−plan goal. Above it in the stack, there is a series of invocations of !loop of a
length equal to the number of iterations of the loop. In order to facilitate correct plan
failure handling, Jason interpreter does not remove the top-level invocation from the
intention stack. In the path-following scenario, if the path is of length 1000, the intention
stack would grow to the size 1000 plus the length of after−loop−plan. Notice that several
tenths of thousands path steps are not that unrealistic for large grid environments. In
cases with an extremely high number of loop iterations, the intention stack growth can
lead to a high memory consumption. Perhaps even more importantly, the following
clean-up of the intention stack, may take an undesirably long time. The execution of
after−loop−plan may therefore be heavily delayed. Possibly even missing some important
timing window. This issue is the same as with the depth-first search algorithm (DFS).
There are two main approaches to the DFS implementation: an exclusive stack and a
recursive function call. The exclusive stack solution requires only the to-be-explored
nodes, while the recursive function call solution requires the activation records of the
recursive function to be present on the program stack as well.

A naı̈ve attempt by a novice programmer could be a loop implementation using the
asynchronous goal invocation !!loop. A straightforward application is inappropriate in
this context though as besides invoking the loop, it would lead to an immediate con-
tinuation with the after−loop−plan.

We propose the following implementation of the loop design pattern, which uses
higher order variables feature of Jason (cf. [8], Chapter 3) to implement a kind of a
callback scheme:

event: context←
before−loop−plan;
!!loop(after−loop−event).

+!after−loop−event: true← after−loop−plan.
+!loop(Callback): not loop−condition←

loop−body;
!!loop(Callback).

+!loop(Callback): loop−condition← !!Callback.

The above loop implementation is well-formed and a valid program according to the
Jason syntax and semantics. Instead of a synchronous event invocation, we invoke the
loop in a asynchronous manner using !!loop and provide it with an argument, which is a
string denoting the event, which should be invoked after the loop finishes – in this case
after−loop−event. When the loop termination condition becomes true, the pattern simply
invokes the event stored as the callback. The advantage of this loop implementation is
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that it does not lead to the intention stack growth, while at the same time it still allows
for plan failure handling as in the standard loop implementation.

In the pattern above, the loop has a callback argument. This callback is added as
a goal upon the loop’s successful termination. An extension of this callback design
solution allows a programmer to introduce a powerful plan failure handling mechanism
as follows:

event: context←
before−loop−plan;
!!loop(after−loop−event, fail−loop−event).

+!after−loop−event: true←
after−loop−plan.

+!fail−loop−event: true←
loop−failure−plan.

+!loop(SuccessCallback, FailCallback): not loop−condition & loop−continuation−condition←
loop−body;
!!loop(SuccessCallback, FailCallback).

+!loop( , FailCallback): not loop−condition & not loop−continuation−condition←
!!FailCallback.

+!loop(SuccessCallback, ): loop−condition←
!!SuccessCallback.

A loop is a handy and a frequently used design pattern in imperative programming.
However, for a novice programmer, a loop implementation in Jason is rather unintuitive
and it often leads to a confusion. One of the straightforward solutions, well in the spirit
of BDI architecture, would be to use persistent goals, such as in 3APL. Another way
to deal with this would be to implement a built-in loop programming construct, or a
macro pre-processor construction similar to the various types of goals and commitment
strategies discussed in [8], Chapter 8, or in [17].

To conclude, in the course of writing up and submission process of this paper, a new
version of Jason interpreter was released. In the most recent version of the interpreter
(from ver. 1.3.4 on), Jason includes a loop construct in the form of two internal ac-
tions for (foreach) and while. As a result, this point is no longer a pressing issue for Jason,
yet the more general solution of the problem presented above might come handy as a
standalone pattern.

4.2 Interruptions and Intention Interactions

Among other desirable properties, intelligent agents are supposed to be able to follow
long term goals, but at the same time should be reactive to events in the environment and
proactively seek opportunities for action whenever they arise in an appropriate context.
Consider the following slight extension of the case-study scenario. The team of agents
is moving through the environment in a formation, however, agents are also capable of
picking up objects, let’s say garbage, from the cells they stand on. Let’s also assume,
an agent perceives the object to pick, only when it is located in the same cell as the
object and it can pick up an object only after it has closely inspected it. In Jason, a
straightforward and naı̈ve implementation of the two behaviours would look like as
follows:

+!formation loop : not aligned←
/∗ calculate the move action towards formation position ∗/
move;
!formation loop.
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+see(Object) : true←
inspect(Object);
pick(Object).

The above naı̈ve implementation does not work properly using the vanilla Jason inter-
preter. The reason is that after the new intention leading to picking up the object from
the cell is formed, it is not ensured that in the same deliberation cycle, the intention
selection function SI selects the same intention for execution. In the case SI selects for
execution first the intention for keeping the formation aligned, it can happen that at the
moment the agent wants to inspect, or pick up the object, the plan fails since the agent
is no more located in the same cell as the object – the plan for keeping the formation
aligned moved it away.

The implementation problem described above is that of interacting intentions (run-
time plans) that can mutually interrupt each other. In Jason, similarly to most state-of-
the-art BDI-based agent programming languages, intentions are implicitly considered
interruptible. However, having several intentions involved in the same context, i.e.,
modifying the same aspect of agent’s state, the problem is how to determine the pri-
ority of execution of the corresponding intentions? Below, we discuss several different
solutions to this problem.

A straightforward approach would be to use some kind of plan synchronisation
mechanism. Jason provides atomic, a pre-defined plan annotation construct ensuring that
the intention instantiated from an atomic plan is executed without interruption until it
finishes. The following code presents a usage of this construct:

@object picking[atomic]
+see(Object) : true←

inspect(Object);
pick(Object).

While simple and straightforward, this solution of the plan interaction does not scale
with the number of involved interacting intentions. Consider that our agent should be
able to quickly renegotiate the details of formation location and its heading with the
team. While interdependent with the formation alignment behaviour, it is independent
to the object picking behaviour. As a result, we would like to impose the following
ordering on the three behaviours: the formation alignment behaviour is preceded by the
opportunistic object picking, which is in turn preceded by the negotiation. However,
the atomic construct applied to the object picking behaviour would cause it to be non-
interruptible, hence the negotiation could not take place.

Another possibility to deal with interacting intentions would be to let the program
handle the situations, in which they can be interrupted, not the intentions themselves.
By that we mean that all plans would be considered implicitly non-interruptible and at
every point in which an intention can be interrupted by a higher-priority event, there
would be an explicit check for all possibilities of such interruptions, followed by a syn-
chronous invocation of the interrupting event and an explicit check for preconditions of
the remaining plan. The following code snippet demonstrates a use of such a technique:

+!formation alignment : context←
align−plan−start;
!pick object; !negotiation;
align−plan−rest.

+!pick object : see(Object)←
pick−plan−start;
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!negotation;
pick−plan−rest.

+!negotiation: request(Sender, Msg)←
negotiation−plan.

Obviously, this technique leads to implementation of agent behaviours in terms of finite
state machines and consequently to a brittle, non-elaboration-tolerant, code. In order
to add a new behaviour, interactions with all the other existing behaviours have to be
considered and these have to be modified accordingly.

An alternative solution supported by the Jason interpreter is to employ .suspend and
.resume internal functions which facilitate suspension and resuming of intentions respect-
ively. The previous example could then be reformulated as follows:

+!formation alignment : context←
align−plan.

+!pick object : see(Object)←
.suspend(formation alignment);
pick−plan;
.resume(formation alignment).

+!negotiation: request(Sender, Msg)←
.suspend(pick object); suspend(formation alignment);
negotiation−plan;
.resume(pick object); .resume(formation alignment).

The presented code should be considered in comparison with the previous example
which involved explicit invocation of the possible higher-priority interruptions. In this
case, the approach is to rather let the lower-priority plans to proceed freely, while the
higher-priority behaviours should care for suspending and resuming the possibly run-
ning lower-priority plans. Clearly, both solutions suffer from the same problems and
lead to a brittle code in which plans for various independent behaviours have to be
informed and have to depend on each other for the program to execute correctly.

The only scalable and flexible mechanism for the problem of interacting plans is a
customization of the intention selection function SI . The modified function would pri-
oritise the intentions appropriately according to the particular application domain. The
downside of this, rather heavyweight, solution is that it renders the resulting Jason pro-
gram ambiguous and not understandable in isolation. An important part of the program
semantics is this way shifted to the Java side and the Jason program cannot be fully
comprehended without understanding the Java code functionality.

Finally, in [8] authors discuss the plan annotation priority reserved for future use. The
annotation is intended to instruct the plan selection and intention selection functions
SP and SI about the plan and intention selection priority respectively. They also note
that the mechanism is not implemented in Jason programming system yet and do not
provide enough technical detail on its functionality.

Above, we have tried to show that the problem of steering plan interactions and
interruptions is an important one, yet not solved appropriately in the current incarnation
of Jason. On one hand, an intuitive and clean mechanism for intention interaction is
vital in BDI-style agent programming, where several intentions might be running in
parallel and interleave their executions. On the other, intentions can interact in many
different ways. To strike balance between the two requirements, as an informal attempt,
we suggest a conservative extension of Jason allowing to impose partial ordering of
plans and intentions in a program. While certainly not a mechanism general enough
(consider e.g., a specification of the priorities of the program modules, similar to the
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one proposed in [15]), such a mechanism, would help to avoid customisation of the
intention selection function SI , which we consider a bad design practice for the reasons
discussed above.

4.3 Mental Notes and Plan Destructors

Mental notes are beliefs added to an agent’s belief base from inside its intention. This
way the agent can remind itself about status of its own execution and partially solve the
problem of intention interactions discussed in the previous section. The main reason
to employ mental notes is to provide a way to transfer complex information between
two behaviours, usually between a behaviour and its invoked subgoals. As a result, the
mental notes can be used as a kind of local variables of plans. The belief base may have
to be cleaned up upon an intention completion by retracting these “local variables”
corresponding to the intention. If implemented carefully, Jason provides a means to
implement such a mechanism. Consider the following code:

+!event: context←
+event(note1);
...;
+event(note2);
...;
.abolish(event( )).

Each mental note local to the intention triggered by the event event is of a particular
form, allowing a bulk retract of all the beliefs of one argument and name event using the
internal action .abolish.

While relatively straightforward, this technique can lead to difficulties in the case
of an intention failure. The involved problems are quite similar to those involved in
handling run-time exceptions in imperative programming languages. Upon an intention
failure, the local mental notes have to be cleaned up as well. A variation of the following
can be used to achieve that:

−!event: context←
...;
.abolish(event( )).

Besides code duplication, a naı̈ve Jason programmer can simply forget to implement the
appropriate failure plan. Another issue of this technique is that it might be necessary to
use different mental note forms for alternative plans handling the event event. However,
upon an intention failure it is no longer possible to infer, which particular intention has
failed.

We informally propose a language extension similar to the exception handling pro-
gramming construct try−catch−finally present in many imperative languages, as well as
in some niche agent programming languages, such as StorySpeak [12]. Consider the
following code snippet:

+!event: context←
try {

plan−body;
} finally {

.abolish(event( ));
}.
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The code in the finally block should include a plan destructor, a subplan which should
be invoked upon the plan termination, regardless of its success, or a failure. The ad-
vantage of this construct is that the plan destructor is associated with the particular plan
variant handling event +!event, unlike the standard Jason plan failure event −!event. Ob-
viously the syntax of the proposed extension is not in line with the declarative spirit of
AgentSpeak(L) and Jason, but it illustrates the point well.

4.4 Jason Agents vs. External Environment

In the implemented case-study, agents had a time limit imposed on their deliberation.
They had 2500ms to choose their next action. If the action is not chosen within this time-
frame, the simulated environment continues as if the agent executed the action skip and
discards any action reply delivered after the timeout. However, in such environments,
it is vital for an agent programmer, to optimise the speed of the agent’s deliberation as
much as possible. Speeding up the deliberation itself is often not enough. The agent
may then have to restart the whole intention (or just a single instantiated plan) to take
the new state of the environment into account.

In the implemented case-study, it was necessary for agents to reason about complex
aspects of the environment, such as relative positions of teammates in the formation. In
order to speed up the deliberation of the agent, we have implemented a relatively com-
plex caching mechanism in the belief base. Upon each belief update, the agent triggers
an event for a plan pre-calculating answers to often-queried plan context predicates and
stores them as mental notes in his belief base. While speeding up the execution, this
mechanism led to relatively large set of belief base updating plans within the agent.
However, even with this optimisation, the agent was not able to reply to the server
within the set time limit in some situations.

To solve the problem of a prolonged deliberation, we propose two extensions of
the Jason programming system. Prolonged reasoning over the agent’s beliefs is often
caused by rule context conditions (deliberation over complex aspects of the environ-
ment, such as the form of obstacles ahead, path calculation, etc.). In order to speed up
such Prolog query evaluations, we propose to implement a RETE-style mechanism [11]
for context conditions and their caching. As a result, they would be treated as constant
queries for the rest of the deliberation cycle.

To deal with the intention restart problem, Jason provides constructs for explicit
management of the intention base. Current implementation of the Jason programming
system provides the internal action .drop intention facilitating forceful intention drop from
within a plan of the agent. A straightforward use of this mechanism is, however, not well
suited for the case-study application. It would require an implementation of a recurring
goal, a loop like pattern, regularly checking whether the timeout already passed, or not.
Another option would be to add the timestep mechanism handling to the environment
implementation, annotate the relevant plans with a particular name pattern and finally
enhance the agent program with a plan similar to the following one:

+timestep: true←
.drop intention(...);
/∗ possibly restart some of the intentions ∗/.
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However, such design solutions, as the two introduced in the previous paragraph, would
interact with other plans as discussed in Subsection 4.2 and would therefore be difficult
to implement without an appropriate customisation of the intention selection function.
More importantly, in the case of the first solution, regularly checking the timeout could
lead to further slow-down of the deliberation cycle.

We propose an extension of the Jason annotation mechanism allowing for annota-
tions of agent’s intentions with timestamps. At the point when the system timestamp
value is incremented, either by the agent program itself, or from within the underlying
Java code, all the intentions annotated with a lower timestamp should automatically fail
as they become irrelevant.

To conclude this part, let’s consider interaction between the Jason interpreter and an
external environment in general. In its current incarnation, Jason is rather introverted, as
are many other agent-oriented programming languages. In particular, the programming
system implicitly assumes that the agent acts in a synchronous manner with respect to
the environment. This assumption holds when the speed of the agent’s deliberation is
higher, or at least matching the rate of change, the update frequency, of the environ-
ment. However, in cases where the agent deliberation struggles to match the frequency
imposed by the environment, the current implementation of the Jason programming sys-
tem does not provide enough optimisation mechanisms to deal with the issue (in [13],
we discuss some possibilities dealing with this problem in the context of videogame
bots).

4.5 Jason vs. Java

Jason programming system is tightly integrated with the underlying Java infrastructure.
This setup allows for interfacing the implemented agents with their environments in a
very flexible way. It also facilitates extensive customisation of the language interpreter
for the particular application domain. As we already noted above, Jason allows for
custom belief bases, as well as adaptation of the event, plan and intention selection
functions SE , SP and SI , respectively.

We argue that the flexibility of this setup might also be a drawback. The reason is that
such extensive customisations may lead to a fuzzy boundary between Java and Jason
parts of the implemented agent program. Significant and important parts of the agent
program functionality are often implemented in Java code, but this approach tends to
render the Jason (AgentSpeak(L) ) program difficult to understand in isolation.

In this context, a point especially relevant for novice Jason programmers, is the ques-
tion what are the guidelines regarding which aspects of the agent program should be
implemented in Java and which in Jason? In an extreme case, one could consider a
trivial Jason program of the following form:

!main.
+!main: true← .main.

There is a single event invoked at the start of the program, which leads to an invocation
of an internal action main implementing the whole functionality of the agent as a Java
code. In contrast to this approach, we may have the A* search algorithm implemen-
ted exclusively in Jason. While both these Jason programs are extreme and absurd to
consider, they illustrate the point.
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The ability to shift pieces of functionality between Java and Jason, and at the same
time not having clear guidelines regarding what belongs where, leads to confusion of
inexperienced Jason programmers. Bordini, Hübner and Wooldridge briefly mention
this issue in [8], Chapter 11. They seem to take a puristic stance, since they argue that
programmers should resist the temptation to enhance environments with “fake” actions
and other user customisations leading to “cheating” in Jason programming. While this
point is fair, the pragmatic use of the Jason language by a relatively inexperienced pro-
grammer facing design issues such as those discussed above in this section might lead
to a growing frustration and finally a solution through the path of “minimal effort”. The
programmer might simply revert to a more familiar tool, in this case the Java program-
ming language.

A similar issue has been addressed by J. J. Bryson in the context of the POSH react-
ive planner [10]. She proposes a methodology for a behavioural design, which, besides
other things, states explicitly, which parts of behavioural code belong to the underlying
Java (or Python) components and which to the POSH program itself.

4.6 Minor Technical and Methodological Issues

Finally, let us conclude the core discourse by listing some minor technical issues a
programmer learning Jason encounters. While of relatively low importance, improve-
ment on these fronts could have a considerable impact on overall usability of the Jason
programming system.

Debugging. Debugging BDI agent systems is a topic often discussed within the com-
munity. Apart from deeper discussion on particular debugging methods, one of the is-
sues are the appropriate tools available for the particular programming platform. Jason
provides a tool for stepping through the agent’s reasoning cycle, display its current be-
lief base, the pursued intentions and events awaiting evaluation. Apart from problems
with stability of the tool, one of the main difficulties with this style of program debug-
ging is that in situations with relatively short time limit on an agent’s deliberation, this
approach is inapplicable. A more appropriate technique in such situations is to use a
logging facility.

In Jason ver. 1.3.3, which has been used for this study, the provided logger does
not expose enough information to the programmer. It is not comprehensible enough,
because it only reports selected events and plans, percepts, execution control messages
and user defined outputs. It would be useful to dump/export the whole current state of
the agent when needed. Additionally, the user should be allowed to specify different
levels of detail for logging (even dynamically during the execution), as output of whole
states could be space intensive.

Integrated Development Environment. Even though the provided Eclipse plug-in is
reasonably comfortable, it does not follow some of the established patterns for plug-ins
of the same category for Eclipse IDE. Instead of adding program run options directly
to the project options menu, it has them attached to the context menu of a mas2j file.
An ordinary Eclipse plug-in would try and replicate the selection of main class of Java
program, which has essentially the same objectives.
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Another minor issue is the lack of code completion function in the standard Jason
IDE, which rather slows down the agent program implementation.

Educational Material. One of the most difficult aspects of programming in Jason
was actually learning it. There is only a limited material freely available. Thus, along
with generated documentation for the source code (javadoc), examples and demos, the
most useful resource is the book “Programming Multi-Agent Systems in AgentSpeak
Using Jason” [8]. While the book provides a complete description of the programming
system itself, it is still relatively difficult to use as a pedagogical tool. It imposes a
strong emphasis on the theoretical part of Jason, without introducing the student into
pragmatics of building more complex agent systems first. To improve the situation,
we would appreciate several authoritative tutorials on incremental building of complex
agent systems teaching the correct techniques of programming in Jason. As of now,
the initial barrier between first working plans and first complex interacting plans is
tremendous and requires a lot of trial and error approach on the side of the novice Jason
programmer. In our opinion, the hurdle is much greater than those of other, especially
imperative, languages such as Java, C++ or Python.

5 Final Remarks

We have discussed some of the most problematic issues we have faced during the exper-
iment. In particular, the experiment aimed at an implementation of a relatively complex
case-study application by a programmer without a prior knowledge of Jason language.
To keep the experience as relevant to Jason-style agent programming as possible, one
of the goals was to try to use Jason programming system as is, with as few custom-
isations as possible. In particular, we decided not to customise the deliberation cycle
of the Jason interpreter and to limit the code written in Java. The features implemen-
ted in a form of a Java code were those facilitating the interaction with the simulated
environment, such as a set of internal actions providing an access to the path planning
algorithm.

Since we have used the Cows & Cowboys simulated environment for the Multi-Agent
Programming Contest (AgentContest), the complexity of the implemented case-study is
directly comparable to the implementations of AgentContest entries in its last few edi-
tions. For comparison, our implementation resulted in a codebase involving 1127 lines
of code, while the AgentContest entries to editions 2009 and 2010, presented by teams
involving the Jason platform developers, included 1416 and 1648 lines of code respect-
ively. The AgentContest entries, however, aimed at the full-featured cows herding scen-
ario, while our case-study implemented only a fragment of the scenario, environment
exploration and movement in a formation through the environment. The independent
entry to the 2010 edition of the AgentContest by the team of the Technical University
of Denmark featured only 173 lines of Jason code and most of the team functionality
was thus implemented on Java side. If our assumption that the AgentContest entries are
the largest publicly available applications written to date is correct, then our case-study
resulted in one of the most extensive Jason codebases to date.
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In parallel to creating the Jason implementation reported in this paper, several stu-
dents implemented the same case-study application in Java in the context of Multi-
Agent Systems course at CTU in Prague. Interestingly, while most of them considered
the task quite work-intensive and reported a workload in range of 40-60 hours of pro-
gramming and testing to complete the undertaking, the Jason implementation took more
than 100 hours to complete for an experienced Java programmer. The average Java
codebase resulting from the exercise involved more than 4000 lines of code. While no
hard conclusion can be drawn from this remark, it may serve as an indicator that learn-
ing Jason on a non-trivial example application is definitely a difficult task and that the
community should invest more effort into educational material such as more extensive
tutorials on teaching of agent-oriented programming.

The discussion in this paper does not aim at providing a significant scientific con-
tribution. However, we believe that reports such as this contribute to the on-going dis-
cussion in the community on usefulness, relevance and pragmatics of agent-oriented
programming systems, tools and languages, as well as to the future developments of the
field. We would like to emphasize that the issues discussed in this paper are those we
found to be important while developing a concrete experimental case-study. The con-
clusions drawn here, even if generic as they are, should be considered with caution in
the context of the particular application domain. To study the subject in a more depth
and more rigorously, further studies on larger groups of test subjects should take place
and should also consider some established methodologies like Agent-Oriented Software
Engineering.
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Catarina, Brasil) and Jørgen Villadsen (Technical University of Denmark) for the per-
mission to study and use the code of their entries to the AgentContest.

Authors of the presented work were supported by the Czech Ministry of Education
grants MSM6840770038 and MSM0021620838; the Grant Agency of the Czech Tech-
nical University in Prague grant SGS10/189/OHK3/2T/13; the Grant Agency of Czech
Republic grant P103/10/1287 and the Grant Agency of Charles University in Prague
grant 0449/2010/A-INF/MFF.

References

1. Multi-agent programming contest 2010 (2010),
http://www.multiagentcontest.org/2010
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