
Fast-Forward Heuristic for Multiagent Planning

Michal �tolba and Antonín Komenda
{stolba|komenda}@agents.fel.cvut.cz

Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract

Use of heuristics in search-based domain-independent
deterministic multiagent planning is as important as
in classical planning. In this work we propose a formal
and an algorithmic adaptation of a well-known heuris-
tic Fast-Forward into multiagent planning. Such treat-
ment is important as it solves challenges in decentral-
ization of this and other heuristics based on relaxation
of the original planning problem. Such decentraliza-
tion enables global heuristic estimates to be computed
without exposing local information. Additionally, since
Fast-Forward heuristic is based on relaxed planning, we
propose a multiagent approach for building factored re-
laxed planning graphs among the agents. We sketch
proofs that the results of the distributed version of the
algorithm gives the same results as the centralized ver-
sion. Finally, we experimentally validate di�erent dis-
tribution strategies of the heuristic estimate.

Introduction

In recent years the landscape of multiagent planning
research has changed by Brafman and Domshlak's for-
mal treatment and promising complexity results of
domain-independent deterministic multiagent planning
(DMAP) (Brafman and Domshlak 2008) represented as
an extension of STRIPS for more agents. An important
piece of the puzzle was a decomposition of a planning
problem common for all the agents. In principle, the
ideas behind relate to the research of planning problem
factorization and utilization of such for more e�cient
solving of classical planning problems. Therefore even
for cooperative agents, it is reasonable to hide parts of
the information used during planning from other agents
as this helps (in loosely coupled problems) the agents
to focus only on their parts of the problem.
After this publication, the community started to de-

sign and implement �rst planners using the principles
of DMAP described in the Brafman and Domshlak's
paper. The �rst one from Nissim et al. (Nissim, Braf-
man, and Domshlak 2010) was built on distributed con-
straint satisfaction problem solver and a forward chain-
ing planner. This approach precisely followed the ideas

Copyright c© 2013, Association for the Advancement of Ar-
ti�cial Intelligence (www.aaai.org). All rights reserved.

in (Brafman and Domshlak 2008), however exposed a
couple of issues making the approach incomparable in
e�ciency with current state-of-the-art implementations
of classical planners. One of the issues was bad scalabil-
ity with growing length of the coordination part of the
resulting plans. Improvement of scalability was pro-
posed in (Nissim and Brafman 2012) by leaving the
DisCSP+Planning approach and moving to a princi-
ple which is currently the most successful in classical
planning�A* or variations on Best First Search (BFS)
with highly informed automatically derived heuristics.

Since the motivation of (Nissim and Brafman 2012)
was to propose an optimal planner (MA-A*), the
heuristics used were LM-cut (Helmert and Domsh-
lak 2009) with pathmax equation and merge-and-
shrink (Helmert, Haslum, and Ho�mann 2007). In the
distributed search approach, the heuristics were used
only with local information of the respective agent, i.e.,
with its internal actions, its public actions and pro-
jections of other agents' public actions. In discussion
of (Nissim and Brafman 2012), the authors state that
�the greatest practical challenge [. . .] is that of comput-
ing a global heuristic by a distributed system�, which
is precisely our focus in this work. According to our
knowledge, there is no work proposing e�cient plan-
ners for DMAP not focused on optimality of the result-
ing plans. In the �eld of classical planning, on the other
hand, the best performing planners as Fast Downward
and LAMA incorporate a fast, but suboptimal search
algorithm using non-admissible heuristics.

In this work we propose a formal and algorithmic
adaptation of a well-known relaxation heuristic Fast-
Forward hFF (Ho�mann and Nebel 2001) into multia-
gent planning. We argue that such treatment is im-
portant as it demonstrates algorithmic challenges in
decentralization of computation of hFF and other re-
lated heuristics. Additionally, since the hFF heuristic
is based on relaxed planning, we propose a multiagent
(MA) approach for building factored relaxed planning
graphs among the agents. We sketch proofs that the
results of the distributed version of the algorithm gives
the same results as the centralized version. Finally, we
experimentally validate two distribution strategies of
the heuristic estimate against the local estimate.

Multiagent Planning

We consider a number of cooperative and coordinated
agents featuring distinct sets of capabilities (actions),
which concurrently plan and execute their local plans
in order to achieve a joint goal. The world wherein
the agents act is classical and the actions are deter-
ministic. The following formal preliminaries compactly
restate theMA-Strips problem (Brafman and Domsh-
lak 2008) required for the following sections.

A MA-Strips planning problem is a quadruple Π =
〈L,A, s0, Sg〉, where L is a set of propositions, A is a
set of agents α1, . . . , α|A|, s0 is an initial state and Sg
is a set of goal states. A state s ⊆ L is a set of atoms
from a �nite set of propositions L = {p1, . . . , pm} which
holds in s. An action an agent can perform is a tuple
a = 〈pre(a), add(a), del(a)〉, where a is a unique action
label and pre(a), add(a), del(a) respectively denote the
sets of preconditions, add e�ects and delete e�ects of a,
taken from L. Act denotes the set of all actions in the
multiagent planning problem Π, i.e., Act =

⋃
α∈A α.

An agent α = {a1, . . . , an} is characterized precisely
by its capabilities, a �nite repertoire of actions ai ∈ Act
it can preform in the environment. MA-Strips prob-
lems distinguish between the public and internal facts
and actions. Let atoms(a) = pre(a)∪add(a)∪del(a) and
similarly atoms(α) =

⋃
a∈α atoms(a). An α-internal

and public subset of all facts L will be denoted as Lα−int
and Lpub respectively, where Lα−int = atoms(α) \⋃
β∈A\α atoms(β) and Lpub = atoms(α) \ Lα−int. Facts

relevant only for one agent α are denoted as Lα =
Lα−int∪Lpub and a projection of a state sα to an agent
α is a subset of a global state s containing only pub-
lic facts and α-internal facts, formally sα = s ∩ Lα.
The set of public actions of agent α is de�ned as
αpub = {a | a ∈ α, atoms(a) ∩ Lpub 6= ∅} and inter-
nal actions as αint = α \ αpub. The symbol aα will
denote a projection of action a ∈ β, β 6= α for agent
α, i.e., action stripped of all other agents' propositions,
formally atoms(aα) = atoms(a) ∩ Lα.
Note that all actions of an agent α uses only agent's

facts, formally ∀a ∈ α : atoms(a) ⊆ Lα by de�nition
in (Brafman and Domshlak 2008). The goal set SG
of a multiagent planning problem will be treated as
public (Nissim and Brafman 2012), therefore all goal-
achieving actions are public. In the following sections,
as an algorithm for multiagent planning, we will assume
the MA-A∗ from (Nissim and Brafman 2012), but with
a novel distribution of the hFF heuristic.

As a running example, we will use a simple logistics
problem (see Figure 1) in a multiagent setting. There
are two cities each with two locations A,B and C,D
and one package p. A and D represent depots and B,C
airports. Three agents represent two cargo trucks t1,t2
(moving only within the cities) and one airplane a (mov-
ing only between airports B and C). The goal is to
transport the package from depot A to the other de-
pot D.

Figure 1: A running example is an instance of logis-
tics problem with three agents and one package.

Agent Relaxed Planning Graph

Relaxation is a way of simplifying a problem by re-
moving some constraints. In planning, a relaxation is
typically obtained by removing delete e�ect of actions.
Solution of such relaxed planning problem is a relaxed
plan, which can be used to estimate the cost of a plan
in the original problem, e.g., the Fast-Forward heuris-
tic estimation is based on the length of the relaxed
plan. A classical technique for �nding the relaxed plan
is to build a Relaxed Planning Graph (RPG). RPG is a
graph representing the reachability of facts and appli-
cability of actions in the relaxed problem.
Building distributed planning graphs (not relaxed)

was studied by (Pellier 2010), focusing on distribution
of the Graphplan algorithm. Relaxed MA Planning
Graphs were recently studied by (Torreño, Onaindia,
and Sapena 2012), but in the area of planning with in-
complete information and �uent cost estimation.
To obtain a more informed global heuristic estimate

in a MA planning problem using the estimation based
on a RPG, the RPG has to be decentralized. In this
work, we propose a distributed global RPG in form
of a set of distinct Agent RPGs. Such Agent RPG
(ARPG) contains only facts of its owner agent. The ini-
tial state is projection for that agent and since the goals
are treated as public, all agents have complete goals in
their ARPGs. The usage of actions is straightforward in
case of owner agent's internal and public actions which
are used equally as in a classical RPG. Additionally,
the Agent RPGs are extended by projections of other
agents' public actions which were reachable by their
particular owners. This extension enables the agents to
take other agents' capabilities into account, but only at
the time points, where their owners are able to reach
them. Similarly to relaxed problems in STRIPS, we
de�ne a relaxed multiagent planning problem in MA-
STRIPS as a problem stripped of delete e�ects in all
actions of all agents:

De�nition 1. An agent relaxed planning graph
(ARPG) is a directed, labeled and layered graph R′α =
(P ′ ∪ A′, E′) of one particular agent α for a relaxed
multiagent planning task. Let Π = (L,A, s0, SG) be
a MA planning task, then a relaxed MA planning task
Π′ = 〈L,A′, s0, SG〉 contains an altered set of agents A′,
s.t., ∀α ∈ A and α = {a1, . . . , a|A|} there exist a relaxed
agent α′ = {a′1, . . . , a′|A|} and all its actions are relaxed

versions of the regular actions a′i = 〈pre(ai), add(ai), ∅〉.
As in RPG, the nodes of the graph represent proposi-

tions P ′ and actions A′. The arcs E′ represent linkup
of propositions and actions.

In the rest of the paper, the discussion will be only
about relaxed structures, therefore we will omit the
prime signs, which are by convention used to denote
relaxed structures.
ARPGs stem from the classical RPGs, therefore an

i -th proposition layer and action layer will be denoted
as Pi and Ai respectively. The layers alternate, so that
(P0, A0, P1, A1, . . . , An−1, Pn) and all layers Pi ⊆ P and
all layers Ai ⊆ A. The �rst proposition layer P0 con-
tains nodes labeled by propositions of the agent's pro-
jection of the initial state, formally

P0 = {p|p ∈ sα0 }.

Each action layer contains action nodes for all applica-
ble relaxed actions of the agent α in a state represented
by the previous fact layer and external projections of
other agents' public actions reachable in the same layer

Ai = {a|a ∈ α, pre(a) ⊆ Pi} ∪
⋃

β∈A,β 6=α

{bα|b ∈ P βi }.

In all successive fact layers, the nodes copy the previous
fact layer according to the frame axiom and transforms
the facts by actions in the previous action layer, since
for all relaxed actions del(a) = ∅, we can write

Pi = Pi−1 ∪ {p|p ∈ add(a), a ∈ Ai−1}.

At least one of the following terminating conditions has
to hold for the last fact layer Pn:

• the last fact layer ful�lls the goal SG ⊆ Pn,
• or Pn = Pn−1, meaning there are no additional ac-
tions which can extend further fact layers (a �xed-
point).

The arcs in ARPG represent applicability and applica-
tion of actions in relaxed states. We can split the arcs
between two fact layers Pi and Pi+1 into three groups.
The �rst one contains arcs among facts of layer Pi and
preconditions of actions in a layer Ai. The second one
contains relation between e�ects of actions and next in-
duced fact layer Pi+1. Additionally, there are arcs for
all facts from a previous layer e�ectively representing
the frame axioms of the closed world assumption. For-
mally,

Epre
i = {(pi, ai)|pi ∈ pre(ai), ai ∈ Ai},

Eadd
i = {(ai, pi+1)|ai ∈ Ai, pi+1 ∈ add(ai)},

Efrm
i = {(pi, pi+1)|pi ∈ Pi, pi+1 ∈ Pi+1, pi = pi+1}

and Ei = Epre
i ∪ Eadd

i ∪ Efrm
i . Now we will provide an

algorithm for distributed building of ARPGs.

Algorithm The algorithm starts with each agent
building an ARPG using only its own internal and pub-
lic actions. An iterative process is then initiated, in
which the agents exchange information about their pub-
lic actions and extends their ARPGs with projected

Algorithm 1 Distributed build of Agent Relaxed Plan-
ning Graphs

Input: An agent's factor of the relaxed MA planning
problem Πα = 〈Lα, α, sα0 , SG〉.

Output: Agent Relaxed Planning Graph R for α.

1: init():
2: R ←P0 = {p|p ∈ sα0 }
3: R ←build-RPG(R, α, SG)
4: S ←map

[
αpub, integer

]
5: ack-count←idle-count←0
6: check()

7: check():
8: for all a ∈ An−1 s.t. a is public do
9: if a /∈ S or S [a] > earliest layer of appearance

of a in R then
10: S [a]←earliest appearance of a in R
11: ack-count←ack-count+|A|
12: ∀β ∈ A \ α : send(ext-a

[
aβ ,S [a]

]
, to β)

13: end if
14: end for

15: receive(ext-a[aα, i ∈ N], from β ∈ A \ α):
16: ∀α ∈ A : send(not-idle, to α)
17: send(ack, to β)
18: R ←extend-RPG(R, [aα, i])
19: R ←build-RPG(R, α, SG)
20: check()
21: goal-reached()

22: receive(ack):
23: ack-count ← ack-count - 1
24: goal-reached()

25: receive(idle):
26: idle-count ← idle-count + 1
27: if idle-count = |A| then
28: return R
29: end if

30: receive(not-idle):
31: idle-count ← idle-count - 1

32: goal-reached():
33: if SG ∈ R and ack-count = 0 and message queue

is empty then
34: ∀α ∈ A : send(idle, to α)
35: end if

public actions of other agents. The algorithm ter-
minates when the goal (or a �xed-point) is globally
reached and there are no more messages to process.
The pseudo-code of the algorithm is given in Algo-

rithm 1 in an event-driven fashion. The events can
be caused either by receiving a message or internally
by the algorithm itself. We assume that messages sent
from one agent arrive in the same order as they were

fly-a-B-C fly-a-C-B

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-B-C fly-a-C-B
unload-t1-B(t1)

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-C-B
unload-t1-B(t1)
load-a-B

fly-a-C-B
unload-t1-B(t1)
load-a-B
unload-a-B
unload-a-C

fly-a-B-C fly-a-C-B
unload-t1-B(t1)

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-C-B
unload-t1-B(t1)
load-a-B

fly-a-C-B
unload-t1-B(t1)
load-a-B
unload-a-B
unload-a-C

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A
unload-a-C(a)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)
load-t2-C

at-a-B at-a-B
at-a-C

at-a-B
at-a-C

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B at-a-B
at-a-C

at-a-B
at-a-C
at-p-B

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B at-a-B
at-a-C

at-a-B
at-a-C
at-p-B

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B
at-a-C
at-p-B
in-p-a

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-t2-D
at-t2-C
at-p-C

at-t2-D
at-t2-C
at-p-C
in-p-t2

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)
load-t2-C
unload-t2-D

a:

t2:

t1:

1)

2)

3)

a:

t2:

t1:

a:

t2:

t1:

at-t2-D
at-t2-C
at-p-C
at-p-D
in-p-t2

Figure 2: Distributed building of Agent Relaxed Planning Graphs decomposed into iterations.

sent, but we assume no ordering between messages sent
from di�erent agents. We will now explain each event
handling routine.

In the init phase a Relaxed Planning Graph R
is built using only agent's own actions by build-RPG
method from the initial state projection sα0 . A map
S used to store the earliest layer of appearance1 of the
agent's public actions is initialized along with other sup-
porting data structures used for synchronized termina-
tion of the algorithm. After the initialization phase,
reaching of the goal (or a �xed-point) is checked, and if
positive, all agents are informed that the agent is idle
now. Next, the executed check procedure is responsi-
ble for checking whether R contains any public actions.
If so, each action is sent to all other agents β ∈ A \ α
as a projection aβ with its earliest layer of appearance,
unless it was already broadcasted with equal or lower
number of layer (this can happen in future check calls).

1Earliest layer of appearance of an action a in (A)RPG
is the �rst action layer, where a is applicable.

In the next part of the algorithm, there are four mes-
sage handling receive procedures. The �rst one ext-a
is executed when a projection of other agent's public ac-
tion is received. After sending control messages, the ac-
tion is integrated intoR on the i-th layer by extend-RPG
method and the change is propagated by build-RPG, so
that all actions newly applicable in the following lay-
ers are applied accordingly. Then the built ARPG is
checked, whether new public actions (and public ac-
tions newly applicable on earlier layers) are reachable
and whether the goal or the �xed-point was reached.
The last three receive procedures maintain the control
information needed for distributed termination detec-
tion (Mattern 1987). The acks counter keeps track of
number of sent external actions and postpones termi-
nation until all sent actions are processed. If an idle
message is received, there are no pending acks and the
number of idle agents is equal to |A|, the algorithm ter-
minates and the resulting ARPG R is returned. Since
not-idle and ack messages are sent in this particular or-
der (lines 17 and 18) and the messages from one agent

are presumed to keep ordering, the algorithm termi-
nates synchronously when all external actions are pro-
cessed and no messages are pending.
In Figure 2, the Algorithm 1 is applied on the running

example depicted in Figure 1. Although the algorithm
is running asynchronously, we can decompose it for clar-
ity into several iterations. In the �rst iteration, the
ARPGs are built using only the actions of the respec-
tive agents a, t1 and t2 (airplane and two trucks). Notice
the bold green action unload-t1-B, which is a public ac-
tion of the truck t1, can be applied thanks to the initial
position of the package. In the next iteration, projec-
tion of the public action is broadcasted and received
by other agents. Upon receiving, their ARPGs are up-
dated, which for the airplane means that the ARPG
is expanded with further layers. Another public action
unload-a-C is applied and therefore broadcasted. In the
third iteration, the projection of the airplane's unload
action is added to the ARPGs of the trucks. For truck
t1 it has no e�ect, but it allows truck t2 to expand the
ARPG and reach goal at-p-D. Notice, that when the
projected unload-a-C(a) was received by truck t2, its
ARPG was �rst extended to have enough layers for the
action to be added to the correct layer.
Although not shown in Figure 2, the algorithm would

continue with one more iteration after broadcasting the
public action reached by truck t2, resulting in all agents
having ARPGs with the same number of layers and all
having reached the goal. Additionally, the algorithm
does not have to terminate when the goal is reached,
but can continue until the �xed-point, which can be
desirable in some situations and which is also the case
when the goal is not reachable.

Proof sketch In this section, we will sketch a proof
showing, that the Agent Relaxed Planning Graphs built
by Algorithm 1 are compatible with a global RPG,
meaning that they contain the same actions (with re-
spect to projections) and that the actions are in the
same layers. We will use this proven theorem further in
a proof of equality of the centralized FF and multiagent
FF (MAFF) heuristics.
Firstly, we will formally de�ne the concept of com-

patibility, then we will show that single iteration of the
algorithm does not violate the compatibility, and �nally
we will show that the algorithm terminates, i.e., the re-
sulting ARPGs are compatible with a centrally built
RPG and that no actions are missing or are super�u-
ous.
Let Π = 〈L,A, s0, SG〉 be a relaxed MA planning

task, Rα be an Agent Relaxed Planning Graph for
agent α built from Π using Algorithm 1, having al-
ternating layers (Pα0 , A

α
0 , P

α
1 , A

α
1 , . . . , A

α
n−1, P

α
n) and let

Aα =
⋃
i∈〈0,n−1〉A

α
i and AA =

⋃
α∈AA

α. Let Π̂ =

〈L,Act , s0, SG〉 be a classical relaxed planning task, R̂
be a classical Relaxed Planning Graph built from Π̂
having alternating layers (P̂0, Â0, P̂1, Â1, . . . , Ân−1, P̂n)

and let Â =
⋃
i∈〈0,n−1〉 Âi. Note that from the mono-

tonicity of (A)RPGs follows ∀i < j : Pi ⊆ Pj and
∀i < j : Ai ⊆ Aj .
De�nition 2. Let a B Ai denote that an action a
is �rst applicable in layer Ai (formally pre(a) ⊆ Pi ∧
pre(a) * Pi−1) regardless of whether the underlying
structure is RPG or ARPG.

De�nition 3. We de�ne that a set of ARPGs R =
{Rα|α ∈ A} is compatible with a RPG R̂ i� for each

action a ∈ AA for which a B Âi holds the following:
1) If a is an internal action of agent α, then a B Aαi .
2) If a is a public action of agent α, then a B Aαi and

∀β ∈ A \ α : aβ B Aβi , where a
β is the projection of

action a for agent β.

Lemma 4. A set of ARPGs R = {Rα|α ∈ A} compati-

ble with a RPG R̂ stays compatible with R̂ after applica-
tion of build-RPG by agent α and successive extend-RPG

by all other agents.

Proof. Let us have a RPG R̂ built from a relaxed plan-
ning task Π̂ and a set of ARPGs R = {Rα|α ∈ A}
being built from relaxed MA planning task Π using
Algorithm 1. The symbol AA denotes all actions ap-
plied in the algorithm so far and let αproj be the set
of projected actions received by agent α so far. Now,
agent α applies build-RPG, so that Rα is updated by
Aαi = Aαi ∪{a|a ∈ α∪αproj : pre(a) ⊆ Pαi } (and accord-
ingly Pαi+1), for each layer Aαi . Let us assume, there
exists an extra action a ∈ α which was newly applied
(a /∈ AA) and for which a B Âi ∧ a 7 Aαi . We can also
assume WLOG, that a is �rst such action (in terms of
layer of appearance).

From de�nition of a B Âi , where pre(a) ⊆ P̂i ∧
pre(a) * P̂i−1 follows that pre(a) ⊆ P̂0 ∪ {p|b ∈
Âi−1, p ∈ add(b)} and pre(a) * P̂0 ∪ {p|b ∈ Âi−2, p ∈
add(b)}. Because a is �rst action for which a B Âi∧a 7
Aαi , for all actions b ∈ α, for which holds b B Âk where

k < i, holds also b B Aαk . Therefore A
α
k = Âk ∩ α and

Pαk = P̂k∩atoms(α) for all k < i and therefore pre(a) ⊆
Pαi ∧ pre(a) * Pαi−1, which means a B Aαi and that is a

contradiction. Now, we can assign AA ← AA∪{a} and
repeat the former step.
After broadcasting projections of the newly applied

public actions and calling extend-RPG by all other
agents, we can show that the second part of De�ni-
tion 3 also holds. Let aα be the projection of an action
a ∈ β which is broadcasted �rst. If there exists some i
for which a B Âi then pre(a) ⊆ P̂i and for the projec-

tion aα holds pre(a) ⊆ P̂i∩Lpub. Because for all actions

b ∈ Âi−1 the lemma holds, if b is public, bα B Aαi−1. Be-
cause aα is a projection, pre(aα) ⊆ Pα0 ∪

⋃
bα∈Aαi−1

add(b)

and therefore aα is applicable in layer i (and subsequent
layers), which means that the extend-RPG ensures that
aα B Aαi .

Theorem 5. When Algorithm 1 terminates, resulting
set of ARPGs R = {Rα|α ∈ A} built from Π is com-

patible with the RPG R̂ built from Π̂ and there are no
additional actions, i.e., Â = AA. Each public action in
Â has its projected counterparts in AA and vice versa,
i.e., for each public action a ∈ Â such that a ∈ α for
some agent α exists projected action aβ for each agent
β ∈ A \ α and aβ ∈ AA. There is no projected action

aβ ∈ AA for which there is no original action a ∈ Â.

Proof. We will now sketch an induction which shows
the compatibility in Theorem 5, based on the Lemma 4.
For the initial step of the induction we take all ARPGs
containing only the �rst fact layer Pα0 which is trivially
compatible because AA = ∅. The induction step is cov-
ered by Lemma 4, because each step of the Algorithm 1
can be decomposed as an application of build-RPG and,
if there are any applied public actions, broadcasting
their projections and application of extend-RPG by all
other agents. Even though the algorithm is running
asynchronously, Lemma 4 holds because of the mono-
tonicity of (A)RPGs.
Termination of the algorithm follows from the termi-

nation of classical RPG, either the algorithm reaches
goal or a �xed-point, where no more actions are added.
Similarly to classical RPG, building of ARPGs is mono-
tonic, which means that the facts and actions can only
be added and because the set of actions is �nite, there
must be a point where no more actions can be added
and the algorithm terminates. The detection of such
situation is more complicated in the distributed setting
and is described thoroughly in the algorithm section.
The last statement we are about to show is that there

are no additional actions, i.e., Â = AA (irrespective of
the projections of public actions) and that each public

action in Â has its projection in AA and vice versa. Let
us assume, that ∃a ∈ Â such that a /∈ AA, let us also
assume, WLOG, that a is such action appearing in the
earliest layer in R̂, say Âi, and that a ∈ α for some
agent α. We know, that exists minimal Apre ⊆ Âi−1
such that pre(a) ⊆ {p|b ∈ Apre, p ∈ add(b)}, because
pre(a) ⊆ Lα−int ∪ Lpub, for all actions b ∈ Apre either
b ∈ α or b is public. Because we assumed, that Apre ⊆
Â, for each b ∈ Apre, if b ∈ α then b ∈ Aαi−1and if b /∈ α
then b is public, therefore bα ∈ Aαi−1. From the said
pre(a) ⊆ {p|b ∈ Aαi−1, p ∈ add(b)}, which means that a
is applicable in Aαi and therefore a must be applied by
the algorithm. If we continue with next such action we
end up with Â ⊆ AA.
Now, we will show that Â ⊇ AA. Let us assume, that

∃a ∈ AA such that a /∈ Â and that a is �rst such action.
Similarly to the previous situation, if a is applicable in
some layer Aαi then there is some set of actions Apre ⊆
Aαi−1, which contains all actions providing preconditions

of a. Since all actions b ∈ Apre are also in Â, a is

applicable in Âi and therefore must be applied.

From Â ⊆ AA and Â ⊇ AA follows that Â = AA. We
have already shown that public actions have their pro-
jected counterparts. The only remaining part to show is
that there are no projected actions in AA without their
respective original actions in Â. This clearly follows
from the algorithm itself, because all projected actions
are created only when a public action is added to some
Aαi by agent α and as shown before, such action would

also be added to Âi.

Multiagent FF Heuristic
With the help of ARPGs, the Fast-Forward heuristic
estimate can be straightforwardly adapted to a multia-
gent setting. We will denoted such heuristic as hMAFF.
The multiagent (MA) relaxed plan backing the hMAFF

estimate can be in general spread over all ARPGs of
the agents in the team as illustrated in Figure 3. The
most left achieving actions has to be considered from
all agents. In the case of projected public actions, the
owner agent has to de�ne part of the the relaxed plan,
possibly using his internal actions, to achieve the inter-
nal facts of the provided public action. Additionally,
the relaxed plan has to share public actions which are
required by more agents at the same layers. The private
parts of the relaxed plan provided by the other agents
can be described by place-holding actions and therefore
no private information of the other agents has to be
revealed. The �nal heuristic estimate is the count of
actions of the MA relaxed plan.

De�nition. Let a MA relaxed plan π be a solution of
a MA relaxed problem Π = 〈L,A, s, SG〉, where s is the
state, we are estimating the cost for, then |π| = h(s) is
the multiagent relaxation heuristic estimate.

Similarly to the relaxation heuristic estimate hFF, we
restrain π for hMAFF according to hFF. A particular π
is de�ned using ARPGs Rα = (P ∪ A,E) of all agents
α ∈ A built for the state s. From the right (meaning
as in Figure 3), the relaxed plan π contains minimal
set of actions A∗m ⊆ Am, achieving the goal facts. The
action layer Am contain actions of all agents in layer
m (ignoring projections of actions, since the respective
original actions are also included in the same layer). If
there is a frame arc (pm−1, pm) ∈ Efrm

m of such facts,
i.e., pm ∈ SG, the fact pm does not need an explicit
achieving action from this particular layer as it will be
achieved by an action from an earlier (more left) layer.
This principle e�ectively selects the most-left achievers
of a fact as proposed by FF heuristic. The action set
A∗m induces next set of facts across all agents

Sm = {p|p ∈ pre(a) : a ∈ A∗m},
which has to be achieved by actions from previous ac-
tion layer Am−1 and so on until the action layer A0 is
reached, where all the actions have their preconditions
satis�ed by the initial state in P0.
Notice that since this de�nition works across all

ARPGs of all agents, the resulting π may contain ac-
tions of di�erent agents.

fly-a-B-C unload-t1-B(t1)

load-t1-A
drive-t1-A-B

unload-t1-B

drive-t2-D-C

load-a-B unload-a-C

unload-a-C(a) load-t2-C

at-a-B at-a-C at-p-B

at-p-A
at-t1-A

at-t1-B
in-p-t1

at-p-B

at-t2-D at-t2-C

in-p-a at-a-C

at-p-C in-p-t2 unload-t2-D

a:

t2:

t1:

at-p-D

Figure 3: Multiagent Relaxed Plan

We can compute hMAFF(s) by �rst building the set
of ARPGs R = {Rα|α ∈ A} for relaxed MA planning
problem Π = 〈L,A, s, SG〉 using Algorithm 1, then si-
multaneously extracting relaxed plans πα for each agent
using Algorithm 2 and �nally summing the lengths of
the resulting relaxed plans, excluding projections of
other agent's public actions.

Theorem 6. Let πα ∩ α be the computed relaxed plan
of agent α restricted only to the agent's actions (exclud-
ing all projections of other agent's public actions), then
hMAFF(s) =

∑
α∈A |πα ∩ α| = hFF(s).

Proof. The fact that hMAFF(s) = hFF(s) follows from

the previously shown compatibility of the RPG R̂ built
for relaxed planning problem Π̂ and the set of ARPGs
built from R = {Rα|α ∈ A} for relaxed MA planning

problem Π. We �rst extract relaxed plans π̂ for Π̂ and
{πα|α ∈ A} for Π by e�ectively choosing �rst achievers
of goal facts and of preconditions of previously chosen
achievers. It is clear that for some fact p we choose an
action a s.t. p ∈ add(a) only if a B Ai for some layer Ai
and there is no action b s.t. p ∈ add(b) and b B Aj for
some j < i. Because of the compatibility of the RPG
and ARPGs, we choose exactly the same actions (and
their projections, which are then omitted) for π̂′ and for
{π′α|α ∈ A′}, which means that |π̂′| =

∑
α∈A′ |π′α ∩ α|

and therefore hMAFF(s) = hFF(s).

Experiments
The experiments were conducted on an implementation
of satis�cing version of MA-A* (Nissim and Brafman
2012) with various relaxation heuristic estimates2. The
algorithm begins with a centralized factorization and a
reachability analysis of a centralized planning problem.
After the factorization, the agents are started receiving
its factors of the problem as an input. The agents run
in parallel, each one in its own thread and the messages
are delivered by an additional asynchronous messaging
thread. Each agent uses an event queue to serialize the
computation and reactions to incoming messages. If an
agent �nds a sound plan (with parts from other agents)
it prints it and stops the distributed process.
Since the algorithm is asynchronous, the runs are

non-deterministic. Therefore we conducted each exper-
imental run as ten measurements. Each measurement
was limited to 8GB of memory for the Java Virtual Ma-
chine and to 10 minutes of runtime. Each measurement

2Technically the implementation is not A* as the heuris-
tics are not admissible, therefore the used algorithm is pre-
cisely MA-BestFirstSearch.

Algorithm 2 Distributed extraction of hMAFF

Input: ARPG R for state s, having layers
(P0, A0, P1, A1, . . . , An−1, Pn) and goal SG ⊆ L.

Output: Relaxed plan R from s to SG.

1: P ← SG
2: R← ∅
3: for i = n− 1; i > 0; i← i− 1 do
4: P ′ ← ∅
5: for p ∈ P do
6: if p /∈ Pi then
7: a← a ∈ Ai, such that p ∈ add(a)
8: R← R ∪ {a}
9: P ′ ← P ′ ∪ pre(a), P ← P\{p}
10: if a is projected action of agent α then
11: request Rα for s, goal pre(aorig) from α
12: R← R ∪Rα
13: end if
14: end if
15: end for
16: P ← P ∪ P ′
17: end for
18: return R

was run on 8-core processor at 3.6GHz separately. The
results from the measurements were averaged.
We used �ve planning domains, four originating in

the single-agent IPC planning benchmarks. Similarly
to the evaluation of the algorithms in (Nissim, Braf-
man, and Domshlak 2010), we chose domains which
are straightforwardly modi�able to the multiagent set-
ting: logistics (similar to the running example, but
with more agents), linear logistics (one package has
to be transported stepwise by all agents), rovers, and
satellites. As in (Komenda, Novák, and P¥chou£ek
2013), we have extended the set of IPC-based domains
by a coordination domain cooperative pathfinding,
in which robots on a grid are tasked to switch their posi-
tions not colliding with each other. We tested following
distribution strategies of FF heuristic estimation:

• hFFα using only locally built RPGs (including projec-
tions of public actions) and local estimation of Fast-
Forward heuristic, as proposed in (Nissim and Braf-
man 2012).

• hMAFF using distributed ARPGs based on Algo-
rithm 1 and distributed extraction of FF heuristic
as described in Algorithm 2.

• Lazy hMAFF using only locally built RPGs (including
projections of public actions) and distributed extrac-

hFF
α hMAFF Lazy hMAFF

|A| l∗ t[s] v cs l t[s] v cs cr ch l t[s] v cs cr ch l

cp

3 6 0.4 99 97 6 6.3 168 166 6.6k 39 6 0.7 117 115 72 40 6
5 16 88 25k 25k 16 � � � � � � 7.6 1.8k 1.8k 120 145 18
7 24 � � � � � � � � � � 323 52k 52k 168 254 30,9

log
4 14 0.6 1.5k 847 14 2.5 505 272 10k 50 14 0.4 365 223 32 45 14
6 20 6.2 17k 7.4k 20,6 � � � � � � 1.3 732 341 52 185 20

llg

6 18 0.2 134 61 18 4.9 118 54 2.0k 35 18 0.5 130 61 22 21 18
8 24 0.6 241 113 24 11 216 102 4.6k 64 24 1.2 231 108 30 34 24
10 30 0.9 381 181 30 27 337 161 8.7k 99 30 2.8 357 170 38 46 30

rov
2 22 � � � � 88 378 4 25k 4 22 19 482 4 72 4 22
3 33 � � � � � � � � � � 261 2.0k 14 108 11 33

sat

4 14 32 32k 369 14 16 941 27 9.8k 22 14,3 0.8 536 29 4 23 14,3
6 21 � � � � � � � � � � 6.2 1.7k 67 6 54 21,3
8 � � � � � � � � � � � 45 4.5k 147 8 104 28,1

Table 1: Experimental results for the heuristics. |A| is number of agents, l is sequential length of the plan (l∗ is
optimal), t is duration of the search in seconds, v is a number of visited states, cs is a number of search messages
(each of size of a state), cr is a number of messages building ARPGs (each of size of a projected public action)
and ch is a number of messages for the heuristic estimate (each of size of a partial relaxed plan). As hFFα do not
build distributed ARPGs, cr and ch are always zero. The domains are coop. pathfinding (cp), logistics (log),
linear logistics (llg), rovers (rov) and satellites (sat). Runs denoted as � did not �nish in the limits.

tion of FF heuristic as in Algorithm 2 with additional
information on reachability of projected actions.

The implementation we used is a preliminary prototype
which is not competitive with the current single-agent
state-of-the-art planners, but nevertheless it gives in-
sights in comparison of the heuristics.

The hMAFF is based on the theory presented in the
previous section. For each state each of the agents
computes the heuristic estimate, i.e., a complete set
of ARPGs is built. In order to manage the distribu-
tion and asynchronism, the ARPG building algorithm
slightly di�ers from Algorithm 1 so that ARPGs for sev-
eral di�erent states can be built simultaneously. The
heuristic estimate is then extracted using Algorithm 2.

In Lazy hMAFF, the ARPGs are built lazily, i.e., an
agent builds an ARPG for its current search state using
its actions and projections similarly as in hFFα , then the
Relaxed Plan (RP) is extracted and only when some
projected action is added to the RP, request is sent to
the owner of the original action. The owner then builds
an ARPG from the given state to preconditions of the
original actions, extracts a RP using the same proce-
dure and sends back the computed RP. The returned
RP is then merged with the original one. This e�ec-
tively forms a distributed recursion algorithm. Such
algorithm signi�cantly lowers communication load and
enables the agents to search in parallel, especially in
loosely coupled problems. In addition to this, reach-
ability analysis using Algorithm 1 can be done before
starting the search to improve the estimate of applica-
bility of the projected actions.

The results in Table 1 show, that hFFα is fast and can
e�ectively solve smaller problem instances, but it is not

much informed, as illustrated by the number of visited
states. This becomes critical in larger problems. On
the other hand, hMAFF is better informed, but it has to
build all ARPGs for each state which is estimated. This
is extremely communication intensive as shown by the
number of exchanged ARPG messages (cr). Also the
possibilities of parallel computation are reduced by the
fact that all agents have to build the ARPGs for each
estimated state.
The best performance is given by the Lazy hMAFF.

This implementation keeps the heuristic estimate qual-
ity of hMAFF, but since it does not build ARPGs dur-
ing the search, but only local RPGs enriched by the
projections of other agents' actions, the RPGs can be
built lazily only for those states where any interaction
between the agents is needed and only those agents in-
volved build the RPGs. The ARPGs are computed only
in an initial reachability analysis, which can be omitted,
but which signi�cantly improves the results.

Final Remarks

Our formal treatment and design of algorithms for com-
puting distributed Relaxed Planning Graph for mul-
tiagent planning can be seen as a �rst step towards
e�cient MA planners based on satis�cing state-space
search techniques utilizing relaxation heuristics. Fur-
thermore, we have experimentally shown that appro-
priate implementation of a decentralized estimation of
a global relaxation heuristic can radically improve com-
putational and communication e�ciency of the plan-
ning process as a whole.

Acknowledgments This work was supported by the
U.S. Air Force EOARD grant no. FA8655-12-1-2096.

References

Brafman, R. I., and Domshlak, C. 2008. From one
to many: Planning for loosely coupled multi-agent sys-
tems. In Rintanen, J.; Nebel, B.; Beck, J. C.; and
Hansen, E. A., eds., Proceedings of ICAPS'08, 28�35.
AAAI.

Helmert, M., and Domshlak, C. 2009. Landmarks,
critical paths and abstractions: What's the di�erence
anyway? In Gerevini, A.; Howe, A. E.; Cesta, A.; and
Refanidis, I., eds., Proceedings of ICAPS'09. AAAI.

Helmert, M.; Haslum, P.; and Ho�mann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential plan-
ning. In Boddy, M. S.; Fox, M.; and Thiébaux, S., eds.,
Proceedings of ICAPS'07, 176�183. AAAI.

Ho�mann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
Journal of Arti�cial Intelligence Research 14:253�302.

Komenda, A.; Novák, P.; and P¥chou£ek, M. 2013.
Domain-independent multi-agent plan repair. Jour-
nal of Network and Computer Applications. DOI:
10.1016/j.jnca.2012.12.011.

Mattern, F. 1987. Algorithms for distributed termina-
tion detection. Distributed computing 2(3):161�175.

Nissim, R., and Brafman, R. I. 2012. Multi-agent A*
for parallel and distributed systems. In van der Hoek,
W.; Padgham, L.; Conitzer, V.; and Winiko�, M., eds.,
Proceedings of AAMAS'12, 1265�1266. IFAAMAS.

Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010.
A general, fully distributed multi-agent planning algo-
rithm. In Proceedings of AAMAS'10, 1323�1330.

Pellier, D. 2010. Distributed planning through graph
merging. In Filipe, J.; Fred, A. L. N.; and Sharp, B.,
eds., Proceedings of ICAART'10, volume 2, 128�134.
IFAAMAS.

Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete infor-
mation. In Raedt, L. D.; Bessière, C.; Dubois, D.; Do-
herty, P.; Frasconi, P.; Heintz, F.; and Lucas, P. J. F.,
eds., Proceedings of ECAI'12, volume 242 of Frontiers
in Arti�cial Intelligence and Applications, 762�767. IOS
Press.

